(本小題滿(mǎn)分12分)已知點(diǎn)F是拋物線(xiàn)C:的焦點(diǎn),S是拋物線(xiàn)C在第一象限內(nèi)的點(diǎn),且|SF|=

(Ⅰ)求點(diǎn)S的坐標(biāo);
(Ⅱ)以S為圓心的動(dòng)圓與軸分別交于兩點(diǎn)A、B,延長(zhǎng)SA、SB分別交拋物線(xiàn)C于M、N兩點(diǎn);
①判斷直線(xiàn)MN的斜率是否為定值,并說(shuō)明理由;
②延長(zhǎng)NM交軸于點(diǎn)E,若|EM|=|NE|,求cos∠MSN的值.

(Ⅰ)(1,1)(Ⅱ)①

解析試題分析:解:(1)設(shè)(>0),由已知得F,則|SF|=
=1,∴點(diǎn)S的坐標(biāo)是(1,1)------------------------2分

(2)①設(shè)直線(xiàn)SA的方程為

,∴。
由已知SA=SB,∴直線(xiàn)SB的斜率為,∴
--------------7分
②設(shè)E(t,0),∵|EM|=|NE|,∴,
 ,則--------------------------8分
∴直線(xiàn)SA的方程為,則,同理 
---------------------------12分
考點(diǎn):拋物線(xiàn)的性質(zhì);直線(xiàn)的斜率公式;向量的坐標(biāo)運(yùn)算;余弦定理。
點(diǎn)評(píng):本題第一小題用了拋物線(xiàn)的性質(zhì),這樣使問(wèn)題簡(jiǎn)化,當(dāng)然,也可以由兩點(diǎn)距離公式來(lái)求。第二小題關(guān)鍵要從題意找出直線(xiàn)SA與SB的關(guān)系。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分12分)
雙曲線(xiàn)的中心為原點(diǎn),焦點(diǎn)在軸上,兩條漸近線(xiàn)分別為,經(jīng)過(guò)右焦點(diǎn)垂直于的直線(xiàn)分別交兩點(diǎn).已知成等差數(shù)列,且同向.
(Ⅰ)求雙曲線(xiàn)的離心率;
(Ⅱ)設(shè)被雙曲線(xiàn)所截得的線(xiàn)段的長(zhǎng)為4,求雙曲線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分)如圖,已知直線(xiàn)OP1,OP2為雙曲線(xiàn)E:的漸近線(xiàn),△P1OP2的面積為,在雙曲線(xiàn)E上存在點(diǎn)P為線(xiàn)段P1P2的一個(gè)三等分點(diǎn),且雙曲線(xiàn)E的離心率為.

(1)若P1、P2點(diǎn)的橫坐標(biāo)分別為x1x,則x1x2之間滿(mǎn)足怎樣的關(guān)系?并證明你的結(jié)論;
(2)求雙曲線(xiàn)E的方程;
(3)設(shè)雙曲線(xiàn)E上的動(dòng)點(diǎn),兩焦點(diǎn),若為鈍角,求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓O和定點(diǎn)A(2,1),由圓O外一點(diǎn)向圓O引切線(xiàn)PQ,切點(diǎn)為Q,且滿(mǎn)足

(1) 求實(shí)數(shù)ab間滿(mǎn)足的等量關(guān)系;
(2) 若以P為圓心所作的圓P與圓O有公共點(diǎn),試求半徑取最小值時(shí)圓P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線(xiàn)的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線(xiàn)過(guò)雙曲線(xiàn)的一個(gè)焦點(diǎn),并與雙曲線(xiàn)的實(shí)軸垂直,已知拋物線(xiàn)與雙曲線(xiàn)的交點(diǎn)為.
(1)求拋物線(xiàn)的方程;
(2)求雙曲線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的兩焦點(diǎn)是F1(0,-1),F(xiàn)2(0,1),離心率e=
(1)求橢圓方程;
(2)若P在橢圓上,且|PF1|-|PF2|=1,求cos∠F1PF2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)如圖所示,橢圓C 的離心率,左焦點(diǎn)為右焦點(diǎn)為,短軸兩個(gè)端點(diǎn)為.與軸不垂直的直線(xiàn)與橢圓C交于不同的兩點(diǎn)、,記直線(xiàn)、的斜率分別為,且

(1)求橢圓 的方程;
(2)求證直線(xiàn) 與軸相交于定點(diǎn),并求出定點(diǎn)坐標(biāo).
(3)當(dāng)弦 的中點(diǎn)落在內(nèi)(包括邊界)時(shí),求直線(xiàn)的斜率的取值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(10分)過(guò)直角坐標(biāo)平面中的拋物線(xiàn),直線(xiàn)過(guò)焦點(diǎn)且與拋物線(xiàn)相交于,兩點(diǎn).
⑴當(dāng)直線(xiàn)的傾斜角為時(shí),用表示的長(zhǎng)度;
⑵當(dāng)且三角形的面積為4時(shí),求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,其中左焦點(diǎn)(-2,0).
(1) 求橢圓C的方程;
(2) 若直線(xiàn)y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線(xiàn)段AB的中點(diǎn)M在圓x2+y2=1上,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案