【題目】如圖,在棱長(zhǎng)為a的正方體ABCDA1B1C1D1中,P,Q,L分別為棱A1D1C1D1,BC的中點(diǎn).

1)求證:ACQL;

2)求四面體DPQL的體積.

【答案】1)見(jiàn)解析;(2.

【解析】

1)取CD的中點(diǎn)H,根據(jù)正方體的幾何性質(zhì),有QHACACHL,再利用線(xiàn)面垂直的判定定理證明.

2)連接PB1B1L,四邊形LDPB1是平行四邊形,根據(jù)等體積法,則有,然后通過(guò)求解.

1)證明:如圖所示:

HCD的中點(diǎn),連接QH,HL,P,Q,L分別為棱A1D1,C1D1,BC的中點(diǎn).

所以QHAC,ACHL,QHHLH,

所以AC⊥平面QHL

QL平面QHL,

ACQL

2)解:如圖所示:

連接PB1,B1L,四邊形LDPB1是平行四邊形,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)C的參數(shù)方程為φ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為

1)直線(xiàn)l與曲線(xiàn)C是否有公共點(diǎn)?并說(shuō)明理由;

2)若直線(xiàn)l與兩坐標(biāo)軸的交點(diǎn)為A,B,點(diǎn)P是曲線(xiàn)C上的一點(diǎn),求△PAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為橢圓上三個(gè)不同的點(diǎn),若坐標(biāo)原點(diǎn)的重心,則的面積為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)我市房地產(chǎn)數(shù)據(jù)顯示,今年我市前5個(gè)月新建住宅銷(xiāo)售均價(jià)逐月上升,為抑制房?jī)r(jià)過(guò)快上漲,政府從6月份開(kāi)始推出限價(jià)房等宏觀調(diào)控措施,6月份開(kāi)始房?jī)r(jià)得到很好的抑制,房?jī)r(jià)回落.今年前10個(gè)月的房?jī)r(jià)均價(jià)如表:

月份x

1

2

3

4

5

6

7

8

9

10

均價(jià)y(萬(wàn)元/平方米)

0.83

0.95

1.00

1.05

1.17

1.15

1.10

1.06

0.98

0.94

地產(chǎn)數(shù)據(jù)研究發(fā)現(xiàn),從1月份至5月份的各月均價(jià)y(萬(wàn)元/平方米)與x之間具有正線(xiàn)性相關(guān)關(guān)系,從6月份至10月份的各月均價(jià)y(萬(wàn)元/平方米)與x之間具有負(fù)線(xiàn)性相關(guān)關(guān)系.

1)若政府不調(diào)控,根據(jù)前5個(gè)月的數(shù)據(jù),求y關(guān)于x的回歸直線(xiàn)方程,并預(yù)測(cè)12月份的房地產(chǎn)均價(jià).(精確到0.01

2)政府調(diào)控后,從6月份至10月份的數(shù)據(jù)可得到yx的回歸直線(xiàn)方程為:.由此預(yù)測(cè)政府調(diào)控后12月份的房地產(chǎn)均價(jià).說(shuō)明政府調(diào)控的必要性.(精確到0.01;;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是拋物線(xiàn)Cy24x上兩點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)與x軸有唯一的交點(diǎn)Px0,0).

(1)求證:x02;

(2)若直線(xiàn)AB過(guò)拋物線(xiàn)C的焦點(diǎn)F,且|AB|10,求|PF|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=|2xa|+|xa+1|

1)當(dāng)a4時(shí),求解不等式fx≥8;

2)已知關(guān)于x的不等式fxR上恒成立,求參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,是等邊三角形,,點(diǎn) 的中點(diǎn),連接

1)證明:平面平面;

2)若,且二面角,求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20191216日,公安部聯(lián)合阿里巴巴推出的“錢(qián)盾反詐機(jī)器人”正式上線(xiàn),當(dāng)普通民眾接到電信網(wǎng)絡(luò)詐騙電話(huà),公安部錢(qián)盾反詐預(yù)警系統(tǒng)預(yù)警到這一信息后,錢(qián)盾反詐機(jī)器人即自動(dòng)撥打潛在受害人的電話(huà)予以提醒,來(lái)電信息顯示為“公安反詐專(zhuān)號(hào)”.某法制自媒體通過(guò)自媒體調(diào)查民眾對(duì)這一信息的了解程度,從5000多參與調(diào)查者中隨機(jī)抽取200個(gè)樣本進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):男性不了解這一信息的有50人,了解這一信息的有80人,女性了解這一信息的有40.

1)完成下列列聯(lián)表,問(wèn):能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為200個(gè)參與調(diào)查者是否了解這一信息與性別有關(guān)?

了解

不了解

合計(jì)

男性

女性

合計(jì)

2)該自媒體對(duì)200個(gè)樣本中了解這一信息的調(diào)查者按照性別分組,用分層抽樣的方法抽取6人,再?gòu)倪@6人中隨機(jī)抽取3人給予一等獎(jiǎng),另外3人給予二等獎(jiǎng),求一等獎(jiǎng)與二等獎(jiǎng)獲得者都有女性的概率.

附:

P(K2k)

0.01

0.005

0.001

k

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】依據(jù)某地某條河流8月份的水文觀測(cè)點(diǎn)的歷史統(tǒng)計(jì)數(shù)據(jù)所繪制的頻率分布直方圖如圖(甲)所示;依據(jù)當(dāng)?shù)氐牡刭|(zhì)構(gòu)造,得到水位與災(zāi)害等級(jí)的頻率分布條形圖如圖(乙)所示.

1)試估計(jì)該河流在8月份水位的眾數(shù);

2)我們知道若該河流8月份的水位小于40米的頻率為f,該河流8月份的水位小于40米的情況下發(fā)生1級(jí)災(zāi)害的頻率為g,則該河流8月份的水位小于40且發(fā)生1級(jí)災(zāi)害的頻率為,其他情況類(lèi)似.據(jù)此,試分別估計(jì)該河流在8月份發(fā)生12級(jí)災(zāi)害及不發(fā)生災(zāi)害的頻率,,

3)該河流域某企業(yè),在8月份,若沒(méi)受12級(jí)災(zāi)害影響,利潤(rùn)為500萬(wàn)元;若受1級(jí)災(zāi)害影響,則虧損100萬(wàn)元;若受2級(jí)災(zāi)害影響則虧損1000萬(wàn)元.現(xiàn)此企業(yè)有如下三種應(yīng)對(duì)方案:

方案

防控等級(jí)

費(fèi)用(單位:萬(wàn)元)

方案一

無(wú)措施

0

方案二

防控1級(jí)災(zāi)害

40

方案三

防控2級(jí)災(zāi)害

100

試問(wèn),如僅從利潤(rùn)考慮,該企業(yè)應(yīng)選擇這三種方案中的哪種方案?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案