若函數(shù),則函數(shù)f(x)的零點為   
【答案】分析:當(dāng)x>0時,由 log2x=0,求得x的值.當(dāng)x≤0時,由-2x+1=0,求得x的值.從而得到函數(shù)的零點.
解答:解:當(dāng)x>0時,由 log2x=0,可得 x=1.
當(dāng)x≤0時,由-2x+1=0,可得x=0.
綜上,函數(shù)f(x)的零點為 1、0,
故答案為 1、0.
點評:本題主要考查函數(shù)零點的定義和求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax+blog2(x+
x2+1
)+1在(-∞,0)上有最小值-3(a,b為非零常數(shù)),則函數(shù)f(x)在(0,+∞)上有最
 
值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河北省高二第二學(xué)期期末考試數(shù)學(xué)(理)試卷 題型:填空題

給出下列三個命題:

①若函數(shù),則函數(shù)f(x)的極值點個數(shù)為1個。

②若

③若是定義在R上的函數(shù),則是函數(shù)處取得極值的必要不充分條件。

其中真命題是_________(把正確命題的序號都填上)。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省大慶實驗中學(xué)高一(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

若函數(shù),則函數(shù)f(x)的周期( )
A.π
B.
C.2π
D.無周期

查看答案和解析>>

同步練習(xí)冊答案