(2012•湖南)不等式|2x+1|-2|x-1|>0的解集為
{x|x>
1
4
}
{x|x>
1
4
}
分析:由不等式|2x+1|-2|x-1|>0?不等式|2x+1|>2|x-1|?(2x+1)2>4(x-1)2即可求得答案.
解答:解:∵|2x+1|-2|x-1|>0,
∴|2x+1|>2|x-1|≥0,
∴(2x+1)2>4(x-1)2,
∴x>
1
4

∴不等式|2x+1|-2|x-1|>0的解集為{x|x>
1
4
}.
故答案為:{x|x>
1
4
}.
點評:本題考查絕對值不等式的解法,將不等式|2x+1|-2|x-1|>0轉(zhuǎn)化為(2x+1)2>4(x-1)2是關(guān)鍵,著重考查轉(zhuǎn)化思想與運算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•湖南)某幾何體的正視圖和側(cè)視圖均如圖所示,則該幾何體的俯視圖不可能是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖南)已知函數(shù)f(x)=eax-x,其中a≠0.
(1)若對一切x∈R,f(x)≥1恒成立,求a的取值集合.
(2)在函數(shù)f(x)的圖象上取定兩點A(x1,f(x1)),B(x2,f(x2)(x1<x2),記直線AB的斜率為K,問:是否存在x0∈(x1,x2),使f′(x0)>k成立?若存在,求x0的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖南)某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.
一次性購物量 1至4件 5 至8件 9至12件 13至16件 17件及以上
顧客數(shù)(人) x 30 25 y 10
結(jié)算時間(分鐘/人) 1 1.5 2 2.5 3
已知這100位顧客中的一次購物量超過8件的顧客占55%.
(Ⅰ)確定x,y的值,并求顧客一次購物的結(jié)算時間X的分布列與數(shù)學期望;
(Ⅱ)若某顧客到達收銀臺時前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨立,求該顧客結(jié)算前的等候時間不超過2.5分鐘的概率.(注:將頻率視為概率)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖南模擬)下列命題中是假命題的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖南模擬)復數(shù)z=(a-2i)i(a∈R,i為虛數(shù)單位)在復平面內(nèi)對應(yīng)的點為M,則“a=-1”是“點M在第四象限”的( 。

查看答案和解析>>

同步練習冊答案