已知F(c,0)是橢圓的右焦點(diǎn),以坐標(biāo)原點(diǎn)O為圓心,a為半徑作圓P,過(guò)F垂直于x軸的直線與圓P交于A,B兩點(diǎn),過(guò)點(diǎn)A作圓P的切線交x軸于點(diǎn)M.若直線l過(guò)點(diǎn)M且垂直于x軸,則直線l的方程為     ;若|OA|=|AM|,則橢圓的離心率等于    
【答案】分析:先根據(jù)條件得到圓的方程,求和交點(diǎn)A(c,b)設(shè)出過(guò)A的直線方程設(shè)為:y-b=k(x-c),再由該直線與圓相切求得斜率k,得到直線方程為:y-b=(x-c),令y=0,得x=此時(shí),M(,0),再由|OA|=|AM|,用兩點(diǎn)間距離公式求得a,c關(guān)系,解得離心率.
解答:解:根據(jù)題意知:圓的方程為:x2+y2=a2F(c,0),
∵AB⊥X
∴A(c,b)
∴過(guò)A的直線方程設(shè)為:y-b=k(x-c)
因?yàn)樵撝本與圓相切
∴d=
解得:k=
所以直線方程為:y-b=(x-c)
令y=0,得x=
此時(shí),M(,0)
又∵|OA|=|AM|,


故答案為:,
點(diǎn)評(píng):本題主要考查橢圓的幾何性質(zhì),主要涉及了圓的方程,直線與圓相切,橢圓的準(zhǔn)線方程,離心率的求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•懷化二模)如圖展示了一個(gè)由區(qū)間(0,k)(其中k為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過(guò)程:區(qū)間(0,k)中的實(shí)數(shù)m對(duì)應(yīng)線段AB上的點(diǎn)M,如圖1;將線段AB圍成一個(gè)離心率為
3
2
的橢圓,使兩端點(diǎn)A、B恰好重合于橢圓的一個(gè)短軸端點(diǎn),如圖2;再將這個(gè)橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,已知此時(shí)點(diǎn)A的坐標(biāo)為(0,1),如圖3,在圖形變化過(guò)程中,圖1中線段AM的長(zhǎng)度對(duì)應(yīng)于圖3中的橢圓弧ADM的長(zhǎng)度.圖3中直線AM與直線y=-2交于點(diǎn)N(n,-2),則與實(shí)數(shù)m對(duì)應(yīng)的實(shí)數(shù)就是n,記作f(m)=n,

現(xiàn)給出下列5個(gè)命題①f(
k
2
)=6
;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(diǎn)(
k
2
,0)
對(duì)稱;⑤函數(shù)f(m)=3
3
時(shí)AM過(guò)橢圓的右焦點(diǎn).其中所有的真命題是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年湖南省懷化市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

如圖展示了一個(gè)由區(qū)間(0,k)(其中k為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過(guò)程:區(qū)間(0,k)中的實(shí)數(shù)m對(duì)應(yīng)線段AB上的點(diǎn)M,如圖1;將線段AB圍成一個(gè)離心率為的橢圓,使兩端點(diǎn)A、B恰好重合于橢圓的一個(gè)短軸端點(diǎn),如圖2;再將這個(gè)橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,已知此時(shí)點(diǎn)A的坐標(biāo)為(0,1),如圖3,在圖形變化過(guò)程中,圖1中線段AM的長(zhǎng)度對(duì)應(yīng)于圖3中的橢圓弧ADM的長(zhǎng)度.圖3中直線AM與直線y=-2交于點(diǎn)N(n,-2),則與實(shí)數(shù)m對(duì)應(yīng)的實(shí)數(shù)就是n,記作f(m)=n,

現(xiàn)給出下列5個(gè)命題①;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(diǎn)對(duì)稱;⑤函數(shù)時(shí)AM過(guò)橢圓的右焦點(diǎn).其中所有的真命題是( )
A.①③⑤
B.②③④
C.②③⑤
D.③④⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案