(選做題)
求直線(t為參數(shù))被曲線所截的弦長.

解:將方程
分別化為普通方程:3x+4y+1=0,x2+y2﹣x+y=0,
所以圓心坐標(biāo)為:(,﹣),半徑為
圓心到直線的距離為:=
所以弦長為2=2=
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選做題
A.選修4-2矩陣與變換
已知矩陣A=
.
12
-14
.
,向量
a
=
.
7
4
.

(Ⅰ)求A的特征值λ1、λ2和特征向量α1、α2;   (Ⅱ)計算A6α的值.
B.選修4-4坐標(biāo)系與參數(shù)方程
已知直線l的參數(shù)方程為
x=4-2t
y=t-2
(t為參數(shù)),P是橢圓
x2
4
+y2=1
上任意一點,求點P到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)已知曲線C的極坐標(biāo)方程為ρ=4cosθ,直線l的參數(shù)方程是:
x=-
5
+
2
2
t
y=
5
+
2
2
t
(t為參數(shù)).
(Ⅰ)求曲線C的直角坐標(biāo)方程,直線l的普通方程;
(Ⅱ)將曲線C橫坐標(biāo)縮短為原來的
1
2
,再向左平移1個單位,得到曲線曲線C1,求曲線C1上的點到直線l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于N,過
N點的切線交CA的延長線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2
3
,OA=
3
OM,求MN的長.
B.選修4-2:矩陣與變換
曲線x2+4xy+2y2=1在二階矩陣M=
.
1a
b1
.
的作用下變換為曲線x2-2y2=1,求實數(shù)a,b的值;
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
)
,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
y=-1-
3
5
(t為參數(shù)),求直線l被圓C所截得的弦長.
D.選修4-5:不等式選講
設(shè)a,b,c均為正實數(shù).
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)已知曲線C的極坐標(biāo)方程為ρ=4cosθ,直線l的參數(shù)方程是:
x=1+
2
2
t
y=1+
2
2
t
(t為參數(shù)).
(Ⅰ)求曲線的直角坐標(biāo)方程,直線l的普通方程;
(Ⅱ)求曲線C與直線l交與A,B兩點,求AB長.

查看答案和解析>>

同步練習(xí)冊答案