設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,并且滿足an>0,2Sn
a
2
n
+n(n∈N*)

(1)求a1,a2,a3;
(2)猜測數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.
分析:(1)分別令n=1,2,3,列出方程組,能夠求出求a1,a2,a3;
(2)猜想:an=n,由2Sn=an2+n可知,當(dāng)n≥2時(shí),2Sn-1=an-12+(n-1),所以an2=2an+an-12-1再用數(shù)學(xué)歸納法進(jìn)行證明;
解答:解:(1)分別令n=1,2,3,得
2a1=a12+1
2(a1+a2)  =a22+2 
2(a1+a2a3) =a32+3

∵an>0,∴a1=1,a2=2,a3=3.
(2)由(1)的結(jié)論:猜想an=n
1)當(dāng)n=1時(shí),a1=1成立;
2)假設(shè)當(dāng)n=k時(shí),ak=k.
那么當(dāng)n=k+1時(shí),
∵2Sk+1=ak+12+k+1,∴2(ak+1+Sk)=ak+12+k+1,
∴ak+12=2ak+1+2Sk-(k+1)=2ak+1+(k2+k)-(k+1)=2ak+1+(k2-1)⇒[ak+1-(k+1)][ak+1+(k-1)]=0.
∵ak+1+(k-1)>0,∴ak+1=k+1,這就是說,當(dāng)n=k+1時(shí)也成立,
故對于n∈N*,均有an=n.
點(diǎn)評:本題考查數(shù)列和不等式的綜合應(yīng)用,解題時(shí)要注意各種不同解法的應(yīng)用,多嘗試一題多解能夠有效地提高解題能力.屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列an的前n項(xiàng)的和為Sn,a1=
3
2
,Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項(xiàng)公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域?yàn)镈n,若Dn內(nèi)的整點(diǎn)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列an的前n項(xiàng)和為SnTn=
Sn
5•2n
,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則
S4
a3
的值為(  )

查看答案和解析>>

同步練習(xí)冊答案