定義方程f(x)=f′(x)的實(shí)數(shù)根x叫做函數(shù)f(x)的“新駐點(diǎn)”,如果函數(shù)g(x)=x,h(x)=lnx,φ(x)=cosx(x∈(,π))的“新駐點(diǎn)”分別為α,β,γ,那么α,β,γ的大小關(guān)系是( )
A.α<β<γ
B.α<γ<β
C.γ<α<β
D.β<α<γ
【答案】分析:由題設(shè)中所給的定義,方程f(x)=f'(x)的實(shí)數(shù)根x叫做函數(shù)f(x)的“新駐點(diǎn)”,對三個(gè)函數(shù)所對應(yīng)的方程進(jìn)行研究,分別計(jì)算求出α,β,γ的值或存在的大致范圍,再比較出它們的大小即可選出正確選項(xiàng).
解答:解:由題意方程f(x)=f'(x)的實(shí)數(shù)根x叫做函數(shù)f(x)的“新駐點(diǎn)”,
對于函數(shù)g(x)=x,由于g′(x)=1,故得x=1,即α=1
對于函數(shù)h(x)=lnx,由于h′(x)=,故得lnx=,令r(x)=lnx-,可知r(1)<0,r(2)>0,故1<β<2
對于函數(shù)φ(x)=cosx(),由于φ′(x)=-sinx,故得cosx=-sinx,即tanx=-1,故有γ=>2
綜上γ>β>α
故選A
點(diǎn)評:本題是一個(gè)新定義的題,理解定義,分別建立方程解出α,β,γ的值或存在范圍是解題的關(guān)鍵,本題考查了推理判斷的能力,計(jì)算能力屬于基本題型
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義方程f(x)=f′(x)的實(shí)數(shù)根x0叫做函數(shù)f(x)的“新駐點(diǎn)”,若函數(shù)g(x)=x,h(x)=ln(x+1),φ(x)=x3-1的“新駐點(diǎn)”分別為α,β,γ,則α,β,γ的大小關(guān)系為( 。
A、α>β>γB、β>α>γC、γ>α>βD、β>γ>α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義方程f(x)=f′(x)的實(shí)數(shù)根x0叫做函數(shù)f(x)的“新駐點(diǎn)”,若函數(shù)g(x)=x,h(x)=ln(x+1),φ(x)=x3-lg(x)=x,h(x)=ln(x+1),φ(x)=x3-1的“新駐點(diǎn)”分別為α,β,γ,則α,β,γ的大小關(guān)系為( 。
A、α>β>γB、β>α>γC、γ>α>βD、β>γ>α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•云南模擬)定義方程f(x)=f′(x)的實(shí)數(shù)根x0叫做函數(shù)f(x)的“新駐點(diǎn)”,如果函數(shù)g(x)=x,h(x)=lnx,φ(x)=cosx(x∈(
π
2
,π))的“新駐點(diǎn)”分別為α,β,γ,那么α,β,γ的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義方程f(x)=f′(x)的實(shí)數(shù)根x0叫做函數(shù)f(x)的“新駐點(diǎn)”,若函數(shù)g(x)=2x,h(x)=lnx,φ(x)=x3(x≠0)的“新駐點(diǎn)”分別為a,b,c,則a,b,c的大小關(guān)系為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義方程f(x)=f′(x)(f′(x)是f(x)的導(dǎo)函數(shù))的實(shí)數(shù)根x0叫做函數(shù)的f(x)“新駐點(diǎn)”,若函數(shù)g(x)=x,r(x)=ln(x+1),φ(x)=x3-1的“新駐點(diǎn)”分別為α,β,γ,則α,β,γ的大小關(guān)系為(  )
A、α>β>γB、β>α>γC、β>γ>αD、γ>α>β

查看答案和解析>>

同步練習(xí)冊答案