8.已知偶函數(shù)f(x)在區(qū)間(-∞,0]單調(diào)遞減,f(-1)=$\frac{1}{2}$,則滿足2f(2x-1)-1<0的取值范圍是(0,1).

分析 由題意根據(jù)f(2x-1)<f(-1),可得|2x-1|<1,由此求得求得x的范圍.

解答 解:偶函數(shù)f(x)在區(qū)間(-∞,0]上單調(diào)遞減,f(-1)=$\frac{1}{2}$,
則由2f(2x-1)-1<0,得f(2x-1)<f(-1),
可得|2x-1|<1,∴-1<2x-1<1,求得0<x<1,
故x的取值范圍為(0,1),
故答案為:(0,1).

點評 本題主要考查函數(shù)的單調(diào)性和奇偶性的綜合應用,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.將245°化為弧度是$\frac{49π}{36}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若$\overrightarrow{AB}•\overrightarrow{BC}=0$,$|{\overrightarrow{AB}}|=1$,$|{\overrightarrow{BC}}|=2$,$\overrightarrow{AD}•\overrightarrow{DC}=0$,則$|{\overrightarrow{BD}}|$的最大值為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.曲線$y={x^3}-\sqrt{3}x+2$上的任意一點P處切線的傾斜角的取值范圍是( 。
A.$[{0,\frac{π}{2}})∪[{\frac{2π}{3},π})$B.$[{\frac{2π}{3},π})$C.$[{0,\frac{π}{2}})∪[{\frac{5π}{6},π})$D.$[{\frac{5π}{6},π})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)y=f(x)是定義域為R的偶函數(shù),當x≥0時,f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}+1,(x>2)}\\{\frac{5}{16}{x}^{2},(0≤x≤2)}\end{array}\right.$,若關于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個不同的實數(shù)根,則實數(shù)a的取值范圍是( 。
A.[-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1]B.(-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1)C.(-$\frac{5}{2}$,-$\frac{9}{4}$)D.(-$\frac{9}{4}$,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)=x2+x,若f(x-2)+f(x)<0成立,則x取值范圍是∅.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列一定是指數(shù)函數(shù)的是( 。
A.y=axB.y=xa(a>0且a≠1)C.$y={(\frac{1}{2})^x}$D.y=(a-2)ax

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=-x2+2x,g(x)=|f(x)|.
(1)求f(x)在區(qū)間[-1,2]上的最小值;
(2)作出函數(shù)g(x)的圖象,并根據(jù)圖象寫出其單調(diào)減區(qū)間;
(3)若函數(shù)y=g(x)-log2m至少有三個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.點P是橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$上的一點,F(xiàn)1和F2是焦點,且$∠{F_1}P{F_2}={60^0}$,則△F1PF2的周長為6,△F1PF2的面積為$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案