精英家教網 > 高中數學 > 題目詳情
(2007•嘉定區(qū)一模)無窮數列{an}中,an=
1
2n
,則a2+a4+…+a2n+…=
1
3
1
3
分析:判斷出數列{a2n}是等比數列,利用無窮遞縮等比數列各項的和公式計算.
解答:解:由已知,a2n=
1
4n
,
a2(n+1)
a2n
=
4n
4n+1
=
1
4
,數列{a2n}是以a2=
1
4
為首項,以
1
4
為公比的等比數列.a2+a4+…+a2n+…=
1
4
1-
1
4
=
1
3

故答案為:
1
3
點評:本題考查無窮遞縮等比數列各項的和,判斷出數列{a2n}是等比數列最關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2007•嘉定區(qū)一模)下列4個命題中,真命題是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•嘉定區(qū)一模)若復數
m2+i1+mi
(i為虛數單位)是純虛數,則實數m=
0或-1
0或-1

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•嘉定區(qū)一模)在平面直角坐標系內,直線l1:x-2ay+1=0和直線l2:2ax+y-1=0(a∈R)的關系是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•嘉定區(qū)一模)已知函數f(x)=
|x+m-1|x-2
,m>0且f(1)=-1.
(1)求實數m的值;
(2)判斷函數y=f(x)在區(qū)間(-∞,m-1]上的單調性,并用函數單調性的定義證明;
(3)求實數k的取值范圍,使得關于x的方程f(x)=kx分別為:
①有且僅有一個實數解;
②有兩個不同的實數解;
③有三個不同的實數解.

查看答案和解析>>

同步練習冊答案