設(shè)數(shù)列{an}的前n項和為Sn,a1=2,點(Sn+1,Sn)在直線=1,其中n∈N*
(I)求數(shù)列{an}的通項公式;
(II)設(shè)Tn=+﹣2,證明:≤T1+T2+T3+…+Tn<3.
(I)解:∵點(Sn+1,Sn)在直線 ﹣ =1,
 
∴數(shù)列{ }構(gòu)成以2為首項,1為公差的等差數(shù)列
 =2+(n﹣1)=n+1
∴Sn=n2+n
∴當(dāng)n≥2時,an=Sn﹣Sn﹣1=2n,而a1=2
∴an=2n;
(II)證明:∵Sn=n2+n ∴Tn= + ﹣2= ,
∵n∈N*,∴Tn>0
∴T1+T2+T3+…+Tn 
∵T1+T2+T3+…+Tn=2[(1﹣ )+( ﹣ )+…+( )]=3 <3
 ≤T1+T2+T3+…+Tn<3.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列an的前n項的和為Sn,a1=
3
2
,Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域為Dn,若Dn內(nèi)的整點(整點即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點)個數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項公式;
(3)設(shè)數(shù)列an的前n項和為SnTn=
Sn
5•2n
,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習(xí)冊答案