命題“對(duì)任意x∈R,|x-2|-|x-4|>3”的否定是
存在x∈R,使得|x-2|-|x-4|≤3
存在x∈R,使得|x-2|-|x-4|≤3
分析:利用全稱命題的否定是特稱命題,可求命題的否定.
解答:解:因?yàn)槊}為全稱命題,根據(jù)全稱命題的否定是特稱命題
得到命題“對(duì)任何x∈R,|x-2|-|x-4|>3”的否定是:存在x∈R,使得|x-2|-|x-4|≤3.
故答案為:存在x∈R,使得|x-2|-|x-4|≤3.
點(diǎn)評(píng):本題主要考查全稱命題的否定,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正態(tài)分布N(μ,σ2)的密度曲線是f(x)=
1
σ
e-
(x-μ)2
2σ2
,給出以下四個(gè)命題:
①對(duì)任意x∈R,f(μ+x)=f(μ-x)成立;
②如果隨機(jī)變量ξ服從N(μ,σ2),且F(x)=P(ξ<x),那么F(x)是R上的增函數(shù);
③如果隨機(jī)變量ξ服從N(108,100),那么ξ的期望是108,標(biāo)準(zhǔn)差是100;
④隨機(jī)變量ξ服從N(μ,σ2),P(ξ<1)=
1
2
,P(ξ>2)=p,則P(0<ξ<2)=1-2p;其中,真命題的序號(hào)是
 
.(寫出所有真命題序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=4sin(πx+
π
3
),x∈R,有下列命題:
①對(duì)任意x∈R,有f(x+1)=-f(x)成立;
②y=f(x)在區(qū)間[0,1]上的最小值為-4;
③y=f(x)的圖象關(guān)于點(diǎn)(-
1
3
,0)對(duì)稱;
④y=f(x)的圖象關(guān)于直線x=
π
6
對(duì)稱.
其中正確的命題的序號(hào)是
 
.(注:把你認(rèn)為正確的命題的序號(hào)都填上.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題:“對(duì)任意x∈R,都有x2+1>2x”的否定是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義域?yàn)镽的函數(shù),有下列命題:
①對(duì)任意x∈R,f(x+1)=f(1-x)成立,那么函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱;
②對(duì)任意x∈R,f(x)+f(1-x)=2成立,那么函數(shù)f(x)的圖象關(guān)于點(diǎn)(1,1)對(duì)稱;
③對(duì)任意x∈R,f(x)+f(x+1)=0成立,那么函數(shù)f(x)是周期為2的周期函數(shù);
④對(duì)任意x∈R,f(1-x)+f(x-1)=0成立,那么函數(shù)f(x)是奇函數(shù).
其中正確的命題的序號(hào)是
 
.(把你認(rèn)為正確的命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省許昌市長(zhǎng)葛三高高考數(shù)學(xué)調(diào)研試卷1(理科)(解析版) 題型:解答題

關(guān)于函數(shù)f(x)=4sin(πx+),x∈R,有下列命題:
①對(duì)任意x∈R,有f(x+1)=-f(x)成立;
②y=f(x)在區(qū)間[0,1]上的最小值為-4;
③y=f(x)的圖象關(guān)于點(diǎn)(-,0)對(duì)稱;
④y=f(x)的圖象關(guān)于直線x=對(duì)稱.
其中正確的命題的序號(hào)是    .(注:把你認(rèn)為正確的命題的序號(hào)都填上.)

查看答案和解析>>

同步練習(xí)冊(cè)答案