(12分)已知2≤(x2,求函數(shù)y=2x-2x的值域.

 

【答案】

解:∵2≤22x2,∴x2+x≤4-2x,即x2+3x-4≤0,得-4≤x≤1.

又∵y=2x-2x是[-4,1]上的增函數(shù),∴24-24≤y≤2-21.

故所求函數(shù)y的值域是[-,].

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x,且f-1(18)=a+2,g(x)=3ax-4x的定義域?yàn)閇0,1].
(1)求g(x)的解析式;
(2)求g(x)的單調(diào)區(qū)間,確定其單調(diào)性并用定義證明;
(3)求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex
ex+1

(Ⅰ)證明函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,
1
2
)對(duì)稱;
(Ⅱ)設(shè)y=f-1(x)為y=f(x)的反函數(shù),令g(x)=f-1(
x+1
x+2
),是否存在實(shí)數(shù)b
,使得任給a∈[
1
4
,
1
3
],對(duì)任意x∈(0,+∞).不等式g(x)>x-ax2
+b恒成立?若存在,求b的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(x+2)2,x<0
4,          x=0
(x-2) 2,x>0.

(1)畫出f(x)的草圖并指出單調(diào)區(qū)間;
(2)若f(x)=16,求相應(yīng)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年上海市八校高三聯(lián)考數(shù)學(xué)試卷(松江二中、青浦、七寶、育才、市二、行知、位育)(解析版) 題型:解答題

已知f(x)=a2x-x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))”推廣到三個(gè)正數(shù)時(shí)結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測(cè)y=f(x)的單調(diào)性(無需證明);
(3)對(duì)滿足(2)的條件的一個(gè)常數(shù)a,設(shè)x=x1時(shí),f(x)取得最大值.試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時(shí),g(x)=f(x),當(dāng)x∈D時(shí),g(x)取得最大值的自變量的值構(gòu)成以x1為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)新題型解析選編(4)(解析版) 題型:解答題

已知f(x)=a2x-x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))”推廣到三個(gè)正數(shù)時(shí)結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測(cè)y=f(x)的單調(diào)性(無需證明);
(3)對(duì)滿足(2)的條件的一個(gè)常數(shù)a,設(shè)x=x1時(shí),f(x)取得最大值.試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時(shí),g(x)=f(x),當(dāng)x∈D時(shí),g(x)取得最大值的自變量的值構(gòu)成以x1為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案