已知f(n)=1+,經計算得f(2)=,f(4)>2,f(8)>,f(16)>3,f(32)>,推測當n≥2時,有f(2n)>   
【答案】分析:根據(jù)已知中的等式:,f(4)>2,,f(16)>3,…,我們分析等式左邊數(shù)的變化規(guī)律及等式兩邊數(shù)的關系,歸納推斷后,即可得到答案.
解答:解:觀察已知中等式:
,
f(4)>2,
,
f(16)>3,
…,
則f(2n)≥(n∈N*
故答案為:f(2n)≥(n∈N*
點評:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質;(2)從已知的相同性質中推出一個明確表達的一般性命題(猜想)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

10、已知f(n)=1+3+5+…+(2n-5),且n是大于2的正整數(shù),則f(10)=
64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(n)=1+
1
23
+
1
33
+
1
43
+…+
1
n3
,g(n)=
3
2
-
1
2n2
,n∈N*
(1)當n=1,2,3時,試比較f(n)與g(n)的大小關系;
(2)猜想f(n)與g(n)的大小關系,并給出證明..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(n)=1+
1
2
+
1
3
+…+
1
n
 (n∈N*),用數(shù)學歸納法證明不等式f(2n)>
n
2
時,f(2k+1)比f(2k)多的項數(shù)是
2k
2k

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(n)=1+
1
2
+
1
3
+…+
1
n
(n∈N+,n≥2),經計算得f(4)>2,f(8)
5
2
,f(16)>3,f(32)
7
2
,由此可推得一般性結論為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(n)=1+
1
2
+
1
3
+…+
1
n
(n∈N+)

經計算得f(2)=
3
2
,f(4)>2,f(8)
5
2
,f(16)>3,f(32)
7
2
,通過觀察,我們可以得到一個一般性的結論.
(1)試寫出這個一般性的結論;
(2)請證明這個一般性的結論;
(3)對任一給定的正整數(shù)a,試問是否存在正整數(shù)m,使得1+
1
2
+
1
3
+…+
1
m
>a
?若存在,請給出符合條件的正整數(shù)m的一個值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案