設(shè)函數(shù)f(x)=ax2+bx+1(a,b∈R),當(dāng)f(-1)=0時,f(x)≥0恒成立.
(1)求f(x)的表達(dá)式.
(2)當(dāng)x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍.

解:(1)當(dāng)f(-1)=0,即a-b+1=0,即b=a+1時,
f(x)=ax2+(a+1)x+1≥0恒成立.
若a=0,則f(x)=x+1≥0不能恒成立.
若a≠0,則,所以a=1,b=2
∴f(x)=x2+2x+1
(2)g(x)=f(x)-kx=x2-(k-2)x+1在[-2,2]上單調(diào),

∴k≤-2或k≥6
分析:(1)由f(-1)=0可得a與b的關(guān)系,再由f(x)≥0恒成立得a與b的另一關(guān)系,聯(lián)立求解即可.
(2)g(x)為二次函數(shù),二次函數(shù)的單調(diào)性問題只要考慮其對稱軸即可.g(x)的對稱軸為x=,只要
點評:本題考查待定系數(shù)法求解析式、二次函數(shù)的單調(diào)性及二次不等式恒成立問題,難度一般.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+
xx-1
(x>1),若a是從1,2,3三個數(shù)中任取一個數(shù),b是從2,3,4,5四個數(shù)中任取一個數(shù),求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+b的圖象經(jīng)過點(1,7),又其反函數(shù)的圖象經(jīng)過點(4,0),求函數(shù)的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+bx-cx,其中a,b,c是△ABC的三條邊,且c>a,c>b,則“△ABC為鈍角三角形”是“?x∈(1,2),使f(x)=0”( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•楊浦區(qū)一模)(文)設(shè)函數(shù)f(x)=ax+1-2(a>1)的反函數(shù)為y=f-1(x),則f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)函數(shù)f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a為如圖所示的程序框圖中輸出的結(jié)果,則f(x)的展開式中常數(shù)項是( 。
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步練習(xí)冊答案