設全集U=R,集合A={x|-4≤x≤2},集合B={x|-1<x≤3},
(1)求A∩B;
(2)求A∪B; 
(3)求(∁UA)∪B.
考點:交、并、補集的混合運算
專題:集合
分析:根據(jù)集合的基本運算,即可得到結論.
解答: 解:(1)∵集合A={x|-4≤x≤2},集合B={x|-1<x≤3},
∴A∩B={x|-1<x≤2};
(2)A∪B={x|-4≤x≤3}; 
(3)∁UA={x|x>2或x<-4},
(∁UA)∪B={x|x>-1或x<-4}.
點評:本題主要考查集合的基本運算,根據(jù)集合的交,補運算是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義在[-3,0]∪[2,3]上的函數(shù)y=f(x)的圖象如圖所示,若直線y=a與y=f(x)的圖象有兩個公共點,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合U={1,2,3,4,5},A={2,4},B={1,2,3},則圖中陰影部分所表示的集合是(  )
A、{4}
B、{2,4}
C、{4,5}
D、{1,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集為R,集合M={x|log2(x-1)<1},則∁RM=( 。
A、[3,+∞)
B、(-∞,1]∪[2,+∞)
C、(-∞,1]∪[3,+∞)
D、(-∞,0]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡(1+tan2α)cos2α=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={0,2,4,6,8,10},集合A={2,4,6},B={0,2,6,8},則CU(A∩B)為( 。
A、{0,8,10}
B、{0,4,8,10}
C、{10}
D、∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,三邊a、b、c所對的角分別為A、B、C,a=
2
,b=3,C=45°
,則
AC
CB
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了普及環(huán)保知識,增強環(huán)保意識,某大學隨機抽取30名學生參加環(huán)保知識測試,得分(十分制)如圖所示,假設得分值的中位數(shù)為me,眾數(shù)為m0,平均值為
.
x
,則( 。
A、me=m0=
.
x
B、me=m0
.
x
C、me<m0
.
x
D、m0<me
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x=a2+1,a∈N+且x≤10},B={y|y=a2-2a+2,a∈N+且y≤10},求A∩B,A∪B.

查看答案和解析>>

同步練習冊答案