一走廊拐角下的橫截面如圖所示,已知內(nèi)壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點,EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.
(1)若水平放置的木棒MN的兩個端點M、N分別在外壁CD和AB上,且木棒與內(nèi)壁圓弧相切于點P.設(shè)∠CMN=θ(rad),試用θ表示木棒MN和長度f(θ).
(2)若一根水平放置的木棒能通過該走廊拐角處,求木棒長度的最大值.

解:(1)如圖,設(shè)圓弧FG所在的圓的圓心為Q,過Q點作CD垂線,垂足為點T,且交MN或其延長線與于S,并連接PQ,再過N點作TQ的垂線,垂足為W.
在Rt△NWS中,因為NW=2,∠SNW=θ,
所以
因為MN與圓弧FG切于點P,所以PQ⊥MN,
在Rt△QPS,因為PQ=1,∠PQS=θ,
所以,
①若M在線段TD上,即S在線段TG上,則TS=QT-QS,
在Rt△STM中,,
因此MN=NS+MS=
②若M在線段CT上,即若S在線段GT的延長線上,則TS=QS-QT,
在Rt△STM中,,
因此MN=NS-MS==
f(θ)=MN===
(2)設(shè),則
因此.因為,又,所以g′(t)<0恒成立,
因此函數(shù)是減函數(shù),所以

答:一根水平放置的木棒若能通過該走廊拐角處,則其長度的最大值為
分析:(1)如圖,設(shè)圓弧FG所在的圓的圓心為Q,過Q點作CD垂線,垂足為點T,且交MN或其延長線與于S,并連接PQ,再過N點作TQ的垂線,垂足為W.在Rt△NWS中用NW和∠SNW表示出NS,在Rt△QPS中用PQ和∠PQS表示出QS,然后分別看S在線段TG上和在線段GT的延長線上分別表示出TS=QT-QS,然后在Rt△STM中表示出MS,利用MN=NS+MS求得MN的表達(dá)式和f(θ)的表達(dá)式.
(2)設(shè)出sinθ+cosθ=t,則sinθcosθ可用t表示出,然后可得f(θ)關(guān)于t的表達(dá)式,對函數(shù)進(jìn)行求導(dǎo),根據(jù)t的范圍判斷出導(dǎo)函數(shù)小于0推斷出函數(shù)為減函數(shù).進(jìn)而根據(jù)t的范圍求得函數(shù)的最小值.
點評:本題主要考查了解三角形的實際應(yīng)用.考查了學(xué)生分析問題和解決問題的能力,基本的運算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)一走廊拐角下的橫截面如圖所示,已知內(nèi)壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點,EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.
(1)若水平放置的木棒MN的兩個端點M、N分別在外壁CD和AB上,且木棒與內(nèi)壁圓弧相切于點P.設(shè)∠CMN=θ(rad),試用θ表示木棒MN和長度f(θ).
(2)若一根水平放置的木棒能通過該走廊拐角處,求木棒長度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)

一走廊拐角下的橫截面如圖所示,已知內(nèi)壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點,EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.

若水平放置的木棒MN的兩個端點M、N分別在外壁CD和AB上,且木棒與內(nèi)壁圓弧相切于點P。設(shè),試用表示木棒MN和長度。

若一根水平放置的木棒能通過該走廊拐角處,求木棒長度的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年高考數(shù)學(xué)復(fù)習(xí)卷E(四)(解析版) 題型:解答題

一走廊拐角下的橫截面如圖所示,已知內(nèi)壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點,EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.
(1)若水平放置的木棒MN的兩個端點M、N分別在外壁CD和AB上,且木棒與內(nèi)壁圓弧相切于點P.設(shè)∠CMN=θ(rad),試用θ表示木棒MN和長度f(θ).
(2)若一根水平放置的木棒能通過該走廊拐角處,求木棒長度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

一走廊拐角下的橫截面如圖所示,已知內(nèi)壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點,EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.
(1)若水平放置的木棒MN的兩個端點M、N分別在外壁CD和AB上,且木棒與內(nèi)壁圓弧相切于點P.設(shè)∠CMN=θ(rad),試用θ表示木棒MN和長度f(θ).
(2)若一根水平放置的木棒能通過該走廊拐角處,求木棒長度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省徐州市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

一走廊拐角下的橫截面如圖所示,已知內(nèi)壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點,EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.
(1)若水平放置的木棒MN的兩個端點M、N分別在外壁CD和AB上,且木棒與內(nèi)壁圓弧相切于點P.設(shè)∠CMN=θ(rad),試用θ表示木棒MN和長度f(θ).
(2)若一根水平放置的木棒能通過該走廊拐角處,求木棒長度的最大值.

查看答案和解析>>

同步練習(xí)冊答案