分析 利用作差法證明a+d>b+c,即2k>2m,得到k>m,再由ad=bc,得到a(2k-a)=b(2m-b),2m(b-2k-ma)=b2-a2=(b+a)(b-a),可知2m整除(b+a)(b-a),但b+a,b-a不能都被4整除,進一步得到2m-1必整除b+a或b-a之一,結(jié)合a,b是奇數(shù),它們的公約數(shù)也是奇數(shù),且是b+a與b-a的因數(shù),從而是2m-1的奇因數(shù),即為1,可得a與b互質(zhì),a與c也互質(zhì),再由ad=bc,知a能整除bc,證得a=1.
解答 證明:∵a[(a+d)-(b+c)]=a2+ad-ab-ac=a2+bc-ab-ac
=(a-b)(a-c)>0,
∴a+d>b+c,即2k>2m,則k>m,
又由ad=bc,有a(2k-a)=b(2m-b),
又2m(b-2k-ma)=b2-a2=(b+a)(b-a),
可知2m整除(b+a)(b-a),但b+a,b-a不能都被4整除(因為它們的和是2b,而2b是奇數(shù)),
∴2m-1必整除b+a或b-a之一,
∵a,b是奇數(shù),它們的公約數(shù)也是奇數(shù),且是b+a與b-a的因數(shù),從而是2m-1的奇因數(shù),即為1,
∴a與b互質(zhì),同理a與c也互質(zhì),但由ad=bc,知a能整除bc,故a=1.
點評 本題考查函數(shù)與方程的綜合運用,考查數(shù)學轉(zhuǎn)化思想方法,考查邏輯思維能力和推理運算能力,難度較大.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{5}{4}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{{3\sqrt{3}}}{2}$ | D. | $\frac{{5\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com