13.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,C為銳角且asinA=bsinBsinC,$b=\sqrt{2}a$.
(1)求C的大;
(2)求$\frac{c^2}{a^2}$的值.

分析 (1)由已知利用正弦定理可得:a2=b2sinC=2a2sinC,可求sinC=$\frac{1}{2}$,結(jié)合C為銳角,可求C的值.
(2)由余弦定理即可解得$\frac{c^2}{a^2}$的值.

解答 解:(1)由已知,asinA=bsinBsinC,
利用正弦定理可得:a2=b2sinC=2a2sinC,
由于:sinC=$\frac{1}{2}$,C為銳角,
解得:C=$\frac{π}{6}$.
(2)由余弦定理可得:c2=a2+b2-2abcosC=3a2-2a×$\sqrt{2}a×\frac{\sqrt{3}}{2}$=3a2-$\sqrt{6}$a2
故解得:$\frac{c^2}{a^2}=3-\sqrt{6}$.

點評 本題主要考查了正弦定理,余弦定理在解三角形中的應用,考查了轉(zhuǎn)化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.在空間直角坐標系中,點P(1,2,-3)關于坐標平面xOy的對稱點為( 。
A.(-1,-2,3)B.(-1,-2,-3)C.(-1,2,-3)D.(1,2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.i2016=( 。
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某學校隨機抽取部分學生調(diào)查其上學路上所需時間(單位:分鐘),并將所得數(shù)據(jù)制成頻率分布直方圖(如圖),若上學路上所需時間的范圍為[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方圖中a的值;
(2))如果上學路上所需時間不少于40分鐘的學生可申請在學校住宿,若招收學生1200人,請估計所招學生中有多少人可以申請住宿;
(3)求該校學生上學路上所需的平均時間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知(x+2)n=a0+a1(x-1)+a2(x-1)2…+an(x-1)n(n∈N*).
(1)求a0及Sn=$\sum_{i=1}^{n}$ai;
(2)試比較Sn與(n-2)3n+2n2的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在等差數(shù)列{an}中,若a3+a4+a5+a6+a7=45,那么a5等于(  )
A.4B.5C.9D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某中學擬在高一下學期開設游泳選修課,為了了解高一學生喜歡游泳是否與性別有關,該學校對100名高一新生進行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳不喜歡游泳合計
男生10
女生20
合計
已知在這100人中隨機抽取1人抽到喜歡游泳的學生的概率為$\frac{3}{5}$.
(1)請將上述列聯(lián)表補充完整:并判斷是否有99.9%的把握認為喜歡游泳與性別有關?并說明你的理由;
(2)針對于問卷調(diào)查的100名學生,學校決定從喜歡游泳的人中按分層抽樣的方法隨機抽取6人成立游泳科普知識宣傳組,并在這6人中任選2人作為宣傳組的組長,設這兩人中男生人數(shù)為X,求X的分布列和數(shù)學期望.
下面的臨界值表僅供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)f(x)=ln$\frac{3x}{2}$-$\frac{2}{x}$的零點一定位于區(qū)間( 。
A.(0,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.求下列各式的值:
(1)$\frac{1+tan75°}{1-tan75°}$;
(2)tan17°+tan28°+tan17°tan28°.

查看答案和解析>>

同步練習冊答案