已知以角B為鈍角的△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,
m
=(a,  2b)
n
=(
3
,  -sinA)
,且
m
n

(1)求角B的大;
(2)求sinA+
3
cosA
的取值范圍.
(1)∵
m
n
.∴
m
n
=0
,
3
a-2bsinA=0
(2分)
由正弦定理,得a=2RsinA,b=2RsinB,代入得:(3分)
3
sinA-2sinBsinA=0,sinA≠0,∴sinB=
3
2
,( 5分)
因?yàn)锽為鈍角,所以角B=
3
.(7分)
(2)∵sinA+
3
cosA=2sin(A+
π
3
)
,(10分)
由(1)知 A∈(0,
π
3
),A+
π
3
∈(
π
3
,
3
)

sin(A+
π
3
)∈(
3
2
,1]
,(12分)
sinA+
3
cosA
的取值范圍是(
3
,2]
(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知以角B為鈍角的△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,
m
=(a,2b),
n
=(
3
,-sinA)
,且
m
n

(1)求角B的大;
(2)求cosA+cosC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)一模)已知以角B為鈍角的△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,
m
=(a,  2b)
,
n
=(
3
,  -sinA)
,且
m
n

(1)求角B的大小;
(2)求sinA+
3
cosA
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以角B為鈍角的△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,
m
=(a,  2b)
n
=(
3
,  -sinA)
,且
m
n

(1)求角B的大;
(2)求sinA-
3
cosC
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以角B為鈍角的△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,
m
=(a,  2b)
,
n
=(1,  -sinA)
,且
m
n

(1)求角B的大。
(2)求sinA+cosC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇月考題 題型:解答題

已知以角B為鈍角的△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,,,且
(1)求角B的大小;
(2)求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案