若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿足a1=an,a2=an-1…an=a1即ai=an-I+1(i是正整數(shù),且1≤i≤n),就稱該數(shù)列為“對稱數(shù)列”.

(1)已知數(shù)列{bn}是項數(shù)為7的對稱數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫出{bn}的每一項

(2)已知{cn}是項數(shù)為2k-1(k≥1)的對稱數(shù)列,且ck,ck+1…c2k-1構成首項為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項和為S2k-1,則當k為何值時,S2k-1取到最大值?最大值為多少?

(3)對于給定的正整數(shù)m>1,試寫出所有項數(shù)不超過2 m的對稱數(shù)列,使得1,2,22…2m-1成為數(shù)列中的連續(xù)項;當m>1500時,試求其中一個數(shù)列的前2008項和S2008

答案:
解析:

  解:(1)設的公差為,則,解得,

  數(shù)列

  (2)

  

  ,

  時,取得最大值.

  的最大值為626.

  (3)所有可能的“對稱數(shù)列”是:

 、;

 、

 、

 、

  對于①,當時,

  當時,

  

  對于②,當時,

  當時,

  對于③,當時,

  當時,

  對于④,當時,

  當時,


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

20、若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整數(shù),且1≤i≤n),就稱該數(shù)列為“對稱數(shù)列”.
(1)已知數(shù)列{bn}是項數(shù)為7的對稱數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫出{bn}的每一項
(2)已知{cn}是項數(shù)為2k-1(k≥1)的對稱數(shù)列,且ck,ck+1…c2k-1構成首項為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項和為S2k-1,則當k為何值時,S2k-1取到最大值?最大值為多少?
(3)對于給定的正整數(shù)m>1,試寫出所有項數(shù)不超過2m的對稱數(shù)列,使得1,2,22…2m-1成為數(shù)列中的連續(xù)項;當m>1500時,試求其中一個數(shù)列的前2008項和S2008

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若有窮數(shù)列a1,a2,a3,…,an(n是正整數(shù)),滿足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整數(shù),且1≤i≤n),就稱該數(shù)列為“對稱數(shù)列”.例如:數(shù)列1,2,3,3,2,1和數(shù)列1,2,3,4,3,2,1都為“對稱數(shù)列”.已知數(shù)列{bn}是項數(shù)不超過2m(m>1,m∈N*)的對稱數(shù)列,使得1,2,22…2m-1成為數(shù)列中連續(xù)的前m項,則數(shù)列{bn}的前2013項和S2013所有可能的取值的序號為(  )
①22013-1
②2(22013-1)
③2m+1-22m-2013-1
④3•2m-1-22m-2014-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整數(shù),且1≤i≤n),就稱該數(shù)列為“對稱數(shù)列”.已知數(shù)列{bn}是項數(shù)為7的對稱數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11試寫出{bn}所有項
2,5,8,11,8,5,2
2,5,8,11,8,5,2

查看答案和解析>>

科目:高中數(shù)學 來源:上海高考真題 題型:解答題

若有窮數(shù)列a1,a2,…,an(n是正整數(shù)),滿足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整數(shù),且1≤i≤n),就稱該數(shù)列為“對稱數(shù)列”。
(1)已知數(shù)列{bn}是項數(shù)為7的對稱數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫出{bn}的每一項;
(2)已知{cn}是項數(shù)為2k-1(k≥1)的對稱數(shù)列,且ck,ck+1,…,c2k-1構成首項為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項和為S2k-1,則當k為何值時,S2k-1取到最大值?最大值為多少?
(3)對于給定的正整數(shù)m>1,試寫出所有項數(shù)不超過2m的對稱數(shù)列,使得1,2,22,…,2m-1成為數(shù)列中的連續(xù)項;當m>1500時,試求其中一個數(shù)列的前2008項和S2008

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省無錫市江陰市成化高級中學高考數(shù)學模擬試卷(18)(解析版) 題型:解答題

若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整數(shù),且1≤i≤n),就稱該數(shù)列為“對稱數(shù)列”.
(1)已知數(shù)列{bn}是項數(shù)為7的對稱數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫出{bn}的每一項
(2)已知{cn}是項數(shù)為2k-1(k≥1)的對稱數(shù)列,且ck,ck+1…c2k-1構成首項為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項和為S2k-1,則當k為何值時,S2k-1取到最大值?最大值為多少?
(3)對于給定的正整數(shù)m>1,試寫出所有項數(shù)不超過2m的對稱數(shù)列,使得1,2,22…2m-1成為數(shù)列中的連續(xù)項;當m>1500時,試求其中一個數(shù)列的前2008項和S2008

查看答案和解析>>

同步練習冊答案