12.已知集合P={1,2,3},Q={x|x2-3x+2≤0},則P∩Q=( 。
A.{1}B.{2}C.{1,3}D.{1,2}

分析 求出集合Q,然后求解交集即可.

解答 解:集合P={1,2,3},Q={x|x2-3x+2≤0}={x|1≤x≤2},
則P∩Q={1,2}.
故選:D.

點評 本題考查交集的求法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.下列函數(shù)中,在(-∞,+∞)上單調(diào)遞增的是( 。
A.y=|x|B.y=x3C.y=log2xD.y=0x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在平行六面體ABCD-EFGH中,若$\overrightarrow{AG}$=2x$\overrightarrow{AB}$+3y$\overrightarrow{BC}$+3z$\overrightarrow{HD}$,則x+y+z等于( 。
A.$\frac{7}{6}$B.$\frac{2}{3}$C.$\frac{5}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}^x\;\;\;\;x>0\\{3^x}+1\;\;\;x≤0\end{array}$,則$f(f(\frac{1}{8}))$的值是(  )
A.$\frac{1}{27}$B.$\frac{28}{27}$C.$-\frac{28}{27}$D.$-\frac{1}{27}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知拋物線y2=2px(p>0)的焦點為F,其準線與雙曲線x2-$\frac{y^2}{4}$=1交于A、B兩點,若△ABF是等邊三角形,則該拋物線焦點F的坐標為($\frac{\sqrt{6}}{2}$,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知函數(shù)f(x)=log3$\frac{x+a}{x-1}$(a>0)是奇函數(shù),則a=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.冪函數(shù)f(x)過點(2,$\frac{1}{2}$),則f(x)的單調(diào)遞減區(qū)間是(  )
A.(0,+∞)B.(-∞,0)C.(-∞,0),(0,+∞)D.(-∞,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+3y-3≥0}\\{2x-y-3≤0}\\{x-y+1≥0}\end{array}\right.$求x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在三棱臺ABC-A1B1C1中,平面α過點A1,B1,且CC1∥平面α,平面α與三棱臺的面相交,交線圍成一個四邊形.
(Ⅰ)在圖中畫出這個四邊形,并指出是何種四邊形(不必說明畫法、不必說明四邊形的形狀);
(Ⅱ)若AB=8,BC=2B1C1=6,AB⊥BC,BB1=CC1,平面BB1C1C⊥平面ABC,二面角B1-AB-C等于60°,求直線AB1與平面α所成角的正弦值.

查看答案和解析>>

同步練習冊答案