已知數(shù)列{a
n}的前n項和為S
n,且
對一切正整數(shù)n成立
(1)求出數(shù)列{a
n}的通項公式;
(2)設(shè)
,求數(shù)列
的前n項和
.
(1)
(2)
試題分析:(1)
于是可利用
與
的關(guān)系求得數(shù)列
的遞推公式
得到數(shù)列
是等比數(shù)列,從而求得數(shù)列
的通項公式;
(2)根據(jù)數(shù)列
的通項公式
的特點,對其前
項的和采用拆項求和的辦法、
=
=
前一部分用錯位相減法求和,后一部分正是等差數(shù)的前
項和,從而求得
.
試題解析:
解:(1)由已知得
,于是可利用
與
的關(guān)系求得數(shù)列
的遞推公式
兩式相減并整理得:
所以
,又
,可知
,進而可知
所以
,故數(shù)列
是首項為6,公比為2的等比數(shù)列,
所以
,即
(2)
設(shè)
①
則
②
由②-①得:
=
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列{a
n}的前n項和為S
n,又a
1=1,a
2=2,且滿足S
n+1=kS
n+1,
(1)求k的值及{a
n}的通項公式;(2)若
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)各項均為正數(shù)的數(shù)列
的前
項和為
,且
滿足
,
.
(1)求
的值;
(2)求數(shù)列
的通項公式;
(3)證明:對一切正整數(shù)
,有
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)S
n是等差數(shù)列{a
n}的前n項和,且S
16>0,S
17=0,若S
n中值最大的為S
k,則k的值是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)數(shù)列{a
n}是各項均為正數(shù)的等比數(shù)列,S
n為其前n項和,m、n、p均為正整數(shù),且滿足m+n=2p,求證:
+≥.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知等比數(shù)列{an}的前n項和為Sn,公比q≠1,若a1=1且an+2+an+1-2an=0(n∈N*),則S6=______.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
數(shù)列{an}滿足a1+2a2+22a3+…+2n-1an=4n.
⑴求通項an;
⑵求數(shù)列{an}的前n項和 Sn.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
[2014·寧波質(zhì)檢]化簡S
n=n+(n-1)×2+(n-2)×2
2+…+2×2
n-2+2
n-1的結(jié)果是( )
A.2n+1-n | B.2n+1-n+2 |
C.2n-n-2 | D.2n+1-n-2 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若數(shù)列
與
滿足
,且
,設(shè)數(shù)列
的前
項和為
,則
=.
查看答案和解析>>