(1)若{an}是等比數(shù)列,試求數(shù)列{bn}的前n項和Sn的公式;
(2)當{bn}是等比數(shù)列時,甲同學說:{an}一定是等比數(shù)列;乙同學說:{an}一定不是等比數(shù)列,你認為他們的說法是否正確?為什么?
解:(1)∵{an}是等比數(shù)列a1=1,a2=a,?∴a≠0,an=an-1.
又bn=an·an+1則b1=a1·a2=a,===a2,
即{bn}是以a為首項,a2為公比的等比數(shù)列.?
∴Sn=
(2)甲、乙兩個同學的說法都不正確,理由如下.?
解法1:設(shè){bn}的公比為q,則===q且a≠0,
又a1=1,a2=a,a1,a3,a5,…,a2n-1,…是以1為首項,q為公比的等比數(shù)列,a2,a4,a6,…,a2n,…是以a為首項,q為公比的等比數(shù)列,即{an}為:1,a,q,aq,q2,aq2,?
當q=a2時,{an}是等比數(shù)列;?
當q≠a2時,{an}不是等比數(shù)列.?
解法2:{an}可能是等比數(shù)列,也可能不是等比數(shù)列,舉例說明如下:?
設(shè){bn}的公比為q?
①取a=q=1時,an=1(n∈N),此時bn=anan+1=1,{an}、{bn}都是等比數(shù)列.?
②取a=2,q=1時,?
an=bn=2,n∈N.
所以{bn}是等比數(shù)列,而{an}不是等比數(shù)列.
科目:高中數(shù)學 來源: 題型:
an | n |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
|
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com