18.設(shè)復(fù)數(shù)z=$\frac{1}{1-i}+{i^7}$,則|z|=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.2

分析 首先利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)模的公式求解.

解答 解:∵z=$\frac{1}{1-i}+{i^7}$=$\frac{1+i}{(1-i)(1+i)}-i$=$\frac{1}{2}-\frac{i}{2}$,
∴|z|=$\sqrt{(\frac{1}{2})^{2}+(\frac{1}{2})^{2}}=\frac{\sqrt{2}}{2}$.
故選:B.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.對于原命題:“已知a,b,c∈R,若a>b,則ac2>bc2”,以及它的逆命題、否命題、逆否命題,在這4個命題中,真命題的個數(shù)為(  )
A.0個B.1個C.2個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.我國是世界上嚴(yán)重缺水的國家之一,城市缺水問題較為突出.某市政府為了節(jié)約生活用水,計劃在本市試行居民生活用水定額管理,即確定一個居民月用水量的標(biāo)準(zhǔn),為了確定一個較為合理的標(biāo)準(zhǔn),必須先了解全市居民日常用水量的分布情況.現(xiàn)采用抽樣調(diào)查的方式,獲得了n位居民某年的月均用水量(單位:),樣本統(tǒng)計結(jié)果如圖表:
分組頻數(shù)頻率
[0,1)a
[1,2)0.19
[2,3)50b
[3,4)0.23
[4,5)0.18
[5,6)5
(I)分別求出n,a,b的值;
(II)若從樣本中月均用水量在[5,6](單位:)的5位居民中任選2人作進(jìn)一步的調(diào)查研究,求月均用水量最多的居民被選中的概率(5位居民的月均用水量均不相等).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知集合A={x∈R|ax2+1=0},若集合A=∅,則a的取值范圍是a≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a>0,函數(shù)f(x)=$\frac{1}{3}{a^2}{x^3}-a{x^2}+\frac{2}{3}$,g(x)=-ax+1,若在區(qū)間$(0,\frac{1}{2}]$上至少存在一個實數(shù)x0,使f(x0)>g(x0)成立,則a的取值范圍是(  )
A.$(-3+\sqrt{17},+∞)$B.$(3+\sqrt{17},+∞)$C.$(-3+\sqrt{17},3+\sqrt{17})$D.$(0,-3+\sqrt{17})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)i是虛數(shù)單位,則復(fù)數(shù)z=i(3-4i)的虛部與模的和(  )
A.8B.9C.5+3iD.5+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知命題p:函數(shù)f(x)=lnx+$\frac{1}{2}{x^2}$-ax為定義域上的增函數(shù),命題q:函數(shù)f(x)=x2+$\frac{2}{x}$,$g(x)={(\frac{1}{2})^x}$-a滿足對?x1∈[1,2],?x2∈[-1,1]有f(x1)≥g(x2)成立,若命題p∨q為真命題,命題p∧q為假命題,則實數(shù)a的取值范圍是( 。
A.(-∞,2]B.$[-\frac{5}{2},+∞)$C.$(-∞,-\frac{5}{2})∪(2,+∞)$D.$(-∞,-\frac{5}{2}]∪[2,+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知兩定點F1(0,-5),F(xiàn)2(0,5),曲線上的點P到F1,F(xiàn)2的距離之差的絕對值為8,則曲線的方程為$\frac{{y}^{2}}{16}-\frac{{x}^{2}}{9}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在平行四邊形ABCD中,AC為一條對角線,$\overrightarrow{AB}=({2\;,\;\;4})$,$\overrightarrow{AC}=({1\;,\;\;3})$,則$\overrightarrow{DA}$=(1,1).

查看答案和解析>>

同步練習(xí)冊答案