設x1,x2是關于x的一元二次方程x2-2(m-1)x+m+1=0的兩個實根,又f(m)=x21+x22,求f(m)的解析式及此函數(shù)f(m)的最小值.
【答案】分析:利用方程的判別式,確定m的范圍,再根據(jù)根與系數(shù)的關系,化簡f(m)的解析式,利用配方法,可求函數(shù)f(m)的最小值.
解答:解:∵x1,x2是x2-2(m-1)x+m+1=0的兩個實根,
∴△=4(m-1)2-4(m+1)≥0,
解得m≤0或m≥3.
又∵x1+x2=2(m-1),x1•x2=m+1,
∴y=f(m)=x12+x22=(x1+x22-2x1x2=4m2-10m+2,
即y=f(m)=4m2-10m+2=
∵m≤0或m≥3.
∴m=0時,f(m)最小值為2.
點評:本題重點考查根與系數(shù)的關系,考查二次函數(shù)的最值,解題的關鍵是構建二次函數(shù)模型,利用配方法求函數(shù)的最值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知下列四個命題:
①函數(shù)f(x)=2x滿足:對任意x1,x2∈R,有f(
x1+x2
2
)<
1
2
[f(x1)+f(x2)];
②函數(shù)f(x)=log2(x+
1+x2
)
,g(x)=1+
2
2x-1
均是奇函數(shù);
③若函數(shù)f(x)的圖象關于點(1,0)成中心對稱圖形,且滿足f(4-x)=f(x),那么f(2)=f(2012);
④設x1,x2是關于x的方程|logax|=k(a>0,a≠1)的兩根,則x1x2=1.
其中正確命題的序號是
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x1、x2是關于x的方程x2+mx+m2-m=0的兩個不相等的實數(shù)根,那么過兩點A(x1,
x
2
1
),B(x2
x
2
2
)的直線與圓(x-1)2+(y-1)2=1的位置關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x1,x2是關于x的一元二次方程x2-2(m-1)x+m+1=0的兩個實根,又f(m)=x21+x22,求f(m)的解析式及此函數(shù)f(m)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x1,x2是關于x的一元二次方程x2-2(m-1)x+m+1=0的兩個實根,又y=(x1+x2)2-2m-2
(Ⅰ)求m的取值范圍;
(Ⅱ)求y=f(m)的解析式及最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閔行區(qū)一模)設x1、x2是關于x的方程x2+mx+
1+m2
=0
的兩個不相等的實數(shù)根,那么過兩點A(x1,
x
2
1
)
B(x2,
x
2
2
)
的直線與圓x2+y2=1的位置關系是(  )

查看答案和解析>>

同步練習冊答案