已知雙曲線
x2
a2
-
y2
b2
=1
與拋物線y2=8x有一個公共的焦點F,且兩曲線的一個交點為P,|PF|=5,則該雙曲線的兩條漸近線方程為
 
分析:先求出c,利用拋物線的定義求出m,再由雙曲線的定義求出a,進而求得b,從而求得兩條漸近線方程.
解答:解:拋物線y2=8x 的焦點F(2,0),準(zhǔn)線為 x=-2,∴c=2.設(shè)P(m,n),
由拋物線的定義得|PF|=5=m+2,∴m=3.由雙曲線的定義得
5
m-
a2
c
=
c
a
,
5
3-
a2
2
=
2
a
,∴a=1,∴b=
3
,∴兩條漸近線方程為 
3
x±y=0
,
故答案為
3
x±y=0
點評:本題考查雙曲線的定義和雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線、拋物線的簡單性質(zhì)的應(yīng)用,求出a 值是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
7
=1
,直線l過其左焦點F1,交雙曲線的左支于A、B兩點,且|AB|=4,F(xiàn)2為雙曲線的右焦點,△ABF2的周長為20,則此雙曲線的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的一個焦點與拋物線y2=4x的焦點重合,且該雙曲線的離心率為
5
,則該雙曲線的漸近線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
,O為坐標(biāo)原點,離心率e=2,點M(
5
,
3
)
在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P,Q兩點,且
OP
OQ
=0
.問:
1
|OP|2
+
1
|OQ|2
是否為定值?若是請求出該定值,若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點
(-2,1)
(-2,1)
;
(2)已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
4
3
x,則雙曲線的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)滿足
a1
b
2
 |=0
,且雙曲線的右焦點與拋物線y2=4
3
x
的焦點重合,則該雙曲線的方程為
 

查看答案和解析>>

同步練習(xí)冊答案