5.設(shè)X為隨機(jī)變量,若X~N(6,$\frac{1}{2}$),當(dāng)P(X<a-2)=P(X>5)時(shí),a的值為9.

分析 根據(jù)隨機(jī)變量符合正態(tài)分布,又知正態(tài)曲線關(guān)于x=6對(duì)稱,得到兩個(gè)概率相等的區(qū)間關(guān)于x=6對(duì)稱,得到關(guān)于a的方程,解方程即可.

解答 解:∵隨機(jī)變量ξ服從正態(tài)分布N(6,8),P(X<a-2)=P(X>5),
∴a-2與5關(guān)于x=6對(duì)稱,
∴a-2+5=12,
∴a=9,
故答案為:9.

點(diǎn)評(píng) 本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,考查曲線關(guān)于x=6對(duì)稱,是一個(gè)基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}sin(\frac{π}{2}x)(x≤0)\\ f(x-2)(x>0)\end{array}$,則f(7)=( 。
A.-1B.0C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=xlnx,則函數(shù)f(x)的導(dǎo)函數(shù)是( 。
A.lnxB.1C.1+lnxD.xlnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若樣本數(shù)據(jù)x1+1,x2+1,…,xn+1的平均數(shù)是10,方差是2,那么對(duì)于數(shù)據(jù)x1+2,x2+2,…,xn+2有( 。
A.平均數(shù)是10,方差是2B.平均數(shù)是11,方差是3
C.平均數(shù)是11,方差是2D.平均數(shù)是14,方差是4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知|$\overrightarrow{a}$|=2,$\overrightarrow$=(1,1),$\overrightarrow{a}$與$\overrightarrow$的夾角為45°.
(1)求|$\overrightarrow$|; 
(2)求 $\overrightarrow{a}$•$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在?ABCD中,AB=2,∠DAB=$\frac{2}{3}$π,E是BC的中點(diǎn),$\overrightarrow{AE}•\overrightarrow{BD}=2$,則$|\overrightarrow{AD}|$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在(a+b+c+d)10的展開式中,有( 。﹤(gè)不同的項(xiàng).
A.$C_{13}^3$B.$C_{10}^4$
C.$C_{14}^4$D.$C_{10}^1C_9^1C_8^1C_7^1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列圖形中可以是某個(gè)函數(shù)的圖象的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)max{a,b}表示a,b兩實(shí)數(shù)中的較大者,當(dāng)-π<x<π時(shí),則不等式max{sinx,cosx}<max{1-$\sqrt{3}$sinx,1-$\sqrt{3}$cosx}的解集為( 。
A.(-π,$\frac{3π}{4}$]∪[$\frac{π}{4}$,π)B.(-π,0)∪($\frac{π}{4}$,π)C.(-π,0)∪($\frac{π}{2}$,π)D.(-π,-$\frac{3π}{4}$]∪[$\frac{π}{4}$,$\frac{3π}{4}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案