x-3
在實(shí)數(shù)范圍內(nèi)有意義,則x的取值范圍是( 。
分析:題目給出了一個(gè)無理式,要使其有意義,需根式內(nèi)部的代數(shù)式大于等于0.
解答:解:要使
x-3
在實(shí)數(shù)范圍內(nèi)有意義,只需x-3≥0,即x≥3.
故選D.
點(diǎn)評(píng):本題考查了函數(shù)定義域的求法,解答的關(guān)鍵是需根式有意義,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:無論m取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根;
(2)若關(guān)于x的二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對(duì)稱.
①求這個(gè)二次函數(shù)的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這兩個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)的條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過點(diǎn)(-5,0),且在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這三個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y3≥y2均成立.求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R),f(-2)=f(0)=0,f(x)的最小值為-1.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)g(x)=f(-x)-λf(x)+1,若g(x)在[-1,1]上是減函數(shù),求實(shí)數(shù)λ的取值范圍;
(3)設(shè)函數(shù)h(x)=log2[p-f(x)],若此函數(shù)在定義域范圍內(nèi)不存在零點(diǎn),求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的一元二次不等式x2+(k-1)x+4≤0在實(shí)數(shù)范圍內(nèi)恒不成立,則實(shí)數(shù)k的取值范圍是
-3<k<5
-3<k<5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市朝陽區(qū)陳經(jīng)綸中學(xué)高一(上)摸底數(shù)學(xué)試卷(解析版) 題型:解答題

已知關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:無論m取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根;
(2)若關(guān)于x的二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對(duì)稱.
①求這個(gè)二次函數(shù)的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這兩個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)的條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過點(diǎn)(-5,0),且在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這三個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y3≥y2均成立.求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案