函數(shù)f(x)在(0,2)上是增函數(shù),且y=f(x+2)是偶函數(shù).試比較f(1)、f、的大小關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(2-a)(x-1)-2lnx.
(I)當a=1時,求f(x)的單調區(qū)間;
(II)若函數(shù)f(x)在(0,
1
2
)上無零點,求a
的最小值;
(III)若0<n<m,求證:
m-n
lnm-lnn
<2m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•資陽一模)已知函數(shù)f(x)=[2sin(x-
π
3
)+sinx]•cosx+
3
sin2x(x∈R)

(1)求函數(shù)f(x)在[0,
π
2
]
上的最大值和最小值.
(2)在銳角△ABC中,f(A)=
3
,a=
7
,b=2
求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
p
=(cos2x,a),
q
=(a,2+
3
sin2x
),函數(shù)f(x)=
p
q
-5(a∈R,a≠0)
(1)求函數(shù)f(x)在[0,
π
2
]
上的最大值
(2)當a=2時,若對任意的t∈R,函數(shù)y=f(x),x∈(t,t+b]的圖象與直線y=-1有且僅有兩個不同的交點,試確定b的值,(不必證明),并求函數(shù)y=f(x)在(0,b]上的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•南寧模擬)已知函數(shù)f(x)=(2-a)(x-1)-2lnx,g(x)=xe1-x.(a∈R,e為自然對數(shù)的底數(shù))
(1)當a=1時,求f(x)的單調區(qū)間;
(2)若函數(shù)f(x)在(0,
12
)
上無零點,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(2-a)(x-1)-2lnx,g(x)=xe1-x.(a∈R,e為自然對數(shù)的底數(shù))
(I)當a=1時,求f(x)的單調區(qū)間;
(II)若函數(shù)f(x)在(0,
12
)上無零點,求a
的最小值;
(III)若對任意給定的x0∈(0,e],在(0,e]上總存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案