如圖所示,在△ABC中,AB>AC,AD為BC邊上的高線,AM是BC邊上的中線,求證:點(diǎn)M不在線段CD上.

答案:
解析:

  證明(反證法)

  假設(shè)M在線段CD上,則BD<BM=CM<DC,

  且AB2=BD2+AD2,AC2=AD2+CD2

  所以AB2=BD2+AD2<BM2+AD2<CD2+AD2=AC2,

  即AB2<AC2,AB<AC.

  這與AB>AC矛盾,所以點(diǎn)M不在線段CD上.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC,已知AB=
4
6
3
cosB=
6
6
,AC邊上的中線BD=
5
,求:
(1)BC的長(zhǎng)度;
(2)sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,點(diǎn)D是邊AB的中點(diǎn),則向量
DC
=( 。
A、
1
2
BA
+
BC
B、
1
2
BA
-
BC
C、-
1
2
BA
-
BC
D、-
1
2
BA
+
BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,∠B=60°,∠C=45°,高AD=
3
,在∠BAC內(nèi)作射線AM交BC于點(diǎn)M,則BM<1的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,∠BAC=90°,∠ABC=60°,AD⊥BC于D,則
AD
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,∠B=60°,∠C=45°,高AD=
3
,在∠BAC內(nèi)作射線AM交BC于點(diǎn)M,求BM<1的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案