已知橢圓E=1(ab>0)的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交EAB兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為(  )
A.=1 B.=1 C.=1 D.=1
D
設(shè)A(x1,y1),B(x2,y2),則 
①-②得,∴.
x1x2=2,y1y2=-2,∴kAB.
kAB,∴,∴a2=2b2
c2a2b2b2=9,∴bc=3,a=3,
E的方程為=1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0)的右焦點(diǎn)為F(1,0),且點(diǎn)(-1,)在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)已知點(diǎn)Q(,0),動直線l過點(diǎn)F,且直線l與橢圓C交于A,B兩點(diǎn),證明:·為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題:方程所表示的曲線為焦點(diǎn)在軸上的橢圓;命題:實(shí)數(shù)滿足不等式.
(1)若命題為真,求實(shí)數(shù)的取值范圍;
(2)若命題是命題的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若兩個(gè)橢圓的離心率相等,則稱它們?yōu)椤跋嗨茩E圓”.如圖,在直角坐標(biāo)系xOy中,已知橢圓C1=1,A1A2分別為橢圓C1的左、右頂點(diǎn).橢圓C2以線段A1A2為短軸且與橢圓C1為“相似橢圓”.
 
(1)求橢圓C2的方程;
(2)設(shè)P為橢圓C2上異于A1,A2的任意一點(diǎn),過PPQx軸,垂足為Q,線段PQ交橢圓C1于點(diǎn)H.求證:H為△PA1A2的垂心.(垂心為三角形三條高的交點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線y=x與橢圓C:+=1的交點(diǎn)在x軸上的射影恰好是橢圓的焦點(diǎn),則橢圓C的離心率為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)P為橢圓+=1(a>b>0)上的任意一點(diǎn),F1為橢圓的一個(gè)焦點(diǎn),則|PF1|的取值范圍為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知曲線C上的動點(diǎn)M(x,y),向量a=(x+2,y)和b=(x-2,y)滿足|a|+|b|=6,則曲線C的離心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,已知橢圓C:+y2=1,在橢圓C上任取不同兩點(diǎn)A,B,點(diǎn)A關(guān)于x軸的對稱點(diǎn)為A′,當(dāng)A,B變化時(shí),如果直線AB經(jīng)過x軸上的定點(diǎn)T(1,0),則直線A′B經(jīng)過x軸上的定點(diǎn)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,F(xiàn)是橢圓的右焦點(diǎn),以點(diǎn)F為圓心的圓過原點(diǎn)O和橢圓的右頂點(diǎn),設(shè)P是橢圓上的動點(diǎn),P到橢圓兩焦點(diǎn)的距離之和等于4.

(1)求橢圓和圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l的方程為x=4,PM⊥l,垂足為M,是否存在點(diǎn)P,使得△FPM為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案