設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且,則sinC=    ,△ABC的面積S=   
【答案】分析:利用同角三角函數(shù)的基本關(guān)系求得sinA,利用正弦定理求得a的值,再由余弦定理求出c,再由正弦定理求得sinC的值.從而求得△ABC的面積S= 的值.
解答:解:△ABC中,由cosA=,可得sinA=.由正弦定理可得 ,
即  ,解得a=
再由余弦定理可得 a2=b2+c2-2bc•cosA,即 =25+c2-10c•,解得 c=
再由正弦定理可得 ,即 ,解得 sinC=
故△ABC的面積S===,
故答案為  ,
點(diǎn)評(píng):本題主要考查正弦定理、余弦定理的應(yīng)用,同角三角函數(shù)的基本關(guān)系,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
3
2
sin2x-cos2-
1
2
,(x∈R).
(Ⅰ)求函數(shù)f(x)的最小值和最小正周期;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且c=
3
,f(C)=0,若
m
=(1,sinA)與
n
=(2,sinB)共線(xiàn),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c.若b=
3
,c=1,B=60°
,則角C=
 
°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c
(1)求證:acosB+bcosA=c;
(2)若acosB-bcosA=
3
5
c,試求
tanA
tanB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)若x∈[
5
24
π,
3
4
π]
,求函數(shù)f(x)的最大值和最小值,并寫(xiě)出相應(yīng)的x的值;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,滿(mǎn)足c=
3
,f(C)=0,且sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,
(1)若a=1,b=2,cosC=
1
4
,求△ABC的周長(zhǎng);
(2)若直線(xiàn)l:
x
a
+
y
b
=1
恒過(guò)點(diǎn)D(1,4),求u=a+b的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案