精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ln (ax+1)+,其中a>0.
(1)若f(x)在x=1處取得極值,求a的值;
(2)若f(x)的最小值為1,求a的取值范圍.
【答案】分析:(1)求導函數,根據f(x)在x=1處取得極值,可得f'(1)=0,即可求得a的值;
(2)設f′(x)=>0,有ax2>2-a,分類討論:a≥2,則f'(x)>0恒成立,f(x)在[0,+∞)上遞增,f(x)的最小值為f(0)=1;0<a<2,可得f(x)在x=處取得最小值f()<f(0)=1,由此可得a的取值范圍.
解答:解:(1)f(x)=ln (ax+1)+=ln(ax+1)+-1,求導函數可得f′(x)=,
∵f(x)在x=1處取得極值,
∴f'(1)=0,∴=0
∴a=1;
(2)設f′(x)=>0,有ax2>2-a,
若a≥2,則f'(x)>0恒成立,f(x)在[0,+∞)上遞增,∴f(x)的最小值為f(0)=1;
若0<a<2,則x>,f'(x)>0恒成立,f(x)在(,+∞)上遞增,在(-∞,)上遞減,
∴f(x)在x=處取得最小值f()<f(0)=1.
綜上知,若f(x)最小值為1,則a的取值范圍是[2,+∞).
點評:本題考查導數知識的運用,考查函數的單調性,考查函數的極值與最值,正確求導是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2+2|lnx-1|.
(1)求函數y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=xlnx
(Ⅰ)求函數f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數a的不同取值,寫出該函數的單調增區(qū)間;
(2)已知當x>0時,函數在(0,
6
)上單調遞減,在(
6
,+∞)上單調遞增,求a的值并寫出函數的解析式;
(3)記(2)中的函數圖象為曲線C,試問是否存在經過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案