14.已知△ABC三邊a=3,b=4,c=5,則cosA等于( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{1}{4}$D.$\frac{{\sqrt{5}}}{3}$

分析 直接利用余弦定理求解即可.

解答 解:△ABC三邊a=3,b=4,c=5,則cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{16+25-9}{2×4×5}$=$\frac{4}{5}$.
故選:B.

點(diǎn)評 本題考查余弦定理的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|2x-1|.
(1)求不等式f(x)+|x+1|<2的解集;
(2)若函數(shù)g(x)=f(x)+f(x-1)的最小值為a,且m+n=a(m>0,n>0),求$\frac{4}{m}+\frac{1}{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知復(fù)數(shù)z=1+bi(b為正實(shí)數(shù)),且(z-2)2為純虛數(shù).
(Ⅰ)求復(fù)數(shù)z;
(Ⅱ)若$ω=\frac{z}{2+i}$,求復(fù)數(shù)ω的模|ω|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知在${(\sqrt{x}-\frac{1}{{2\root{4}{x}}})^n}$的展開式中,只有第5項(xiàng)二項(xiàng)式系數(shù)最大.
(1)判斷展開式中是否存在常數(shù)項(xiàng),若存在,求出常數(shù)項(xiàng);若不存在,說明理由;
(2)求展開式的所有有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知棱長為2,各面均為等邊三角形的四面體S-ABC,求它的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a2=2,a3=2+2a1
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{2n-1}{{a}_{n}}$}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}2x-y≥0\\ 2x+y≤6\\ y≥\frac{1}{2}\end{array}\right.$,則$y+\frac{1}{2x}$的最大值為$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若點(diǎn)${A_n}({n,\frac{S_n}{n}})$在函數(shù)f(x)=-x+c的圖象上運(yùn)動,其中c是與x無關(guān)的常數(shù),且a1=3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記${b_n}={a_{a_n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了研究學(xué)生喜愛打籃球是否與性別有關(guān),某興趣小組對本班48名同學(xué)進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
喜愛打籃球不喜愛打籃球合計(jì)
男生22628
女生101020
合計(jì)321648
(Ⅰ)判斷是否有95%的把握認(rèn)為喜愛籃球與性別有關(guān)?請說明理由;
(Ⅱ)若從女同學(xué)中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛打籃球的女同學(xué)人數(shù)為X,求X的分布列與期望.
附:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.0500.0100.001
k3.8416.63510.828

查看答案和解析>>

同步練習(xí)冊答案