已知函數(shù),且 

(1) 試用含的代數(shù)式表示b,并求的單調區(qū)間;

(2)令,設函數(shù)處取得極值,記點M (,),N(,),P(),  ,請仔細觀察曲線在點P處的切線與線段MP的位置變化趨勢,并解釋以下問題:

(I)若對任意的m (, x),線段MP與曲線f(x)均有異于M,P的公共點,試確定t的最小值,并證明你的結論;

(II)若存在點Q(n ,f(n)), x n< m,使得線段PQ與曲線f(x)有異于P、Q的公共點,請直接寫出m的取值范圍(不必給出求解過程)


解析:

解法1

(Ⅰ)依題意,得

.

從而

①當a>1時,

當x變化時,的變化情況如下表:

x

+

+

單調遞增

單調遞減

單調遞增

由此得,函數(shù)的單調增區(qū)間為,單調減區(qū)間為。

②當時,此時有恒成立,且僅在,故函數(shù)的單調增區(qū)間為R

③當時,同理可得,函數(shù)的單調增區(qū)間為,單調減區(qū)間為

綜上:

時,函數(shù)的單調增區(qū)間為,單調減區(qū)間為;

時,函數(shù)的單調增區(qū)間為R;

時,函數(shù)的單調增區(qū)間為,單調減區(qū)間為.

(Ⅱ)由

由(1)得增區(qū)間為,單調減區(qū)間為,所以函數(shù)在處取得極值,故M()N()。

觀察的圖象,有如下現(xiàn)象:

①當m從-1(不含-1)變化到3時,線段MP的斜率與曲線在點P處切線的斜率之差Kmp-的值由正連續(xù)變?yōu)樨摗?/p>

②線段MP與曲線是否有異于H,P的公共點與Kmp的m正負有著密切的關聯(lián);

③Kmp-=0對應的位置可能是臨界點,故推測:滿足Kmp的m就是所求的t最小值,下面給出證明并確定的t最小值.曲線在點處的切線斜率;

線段MP的斜率Kmp

當Kmp-=0時,解得

直線MP的方程為

時,上只有一個零點,可判斷函數(shù)在上單調遞增,在上單調遞減,又,所以上沒有零點,即線段MP與曲線沒有異于M,P的公共點。

時,.

所以存在使得

即當MP與曲線有異于M,P的公共點

綜上,t的最小值為2.

(2)類似(1)于中的觀察,可得m的取值范圍為

解法2:

(1)同解法一.

(2)由,令,得

由(1)得的單調增區(qū)間為,單調減區(qū)間為,所以函數(shù)在處取得極值。故M().N()

 (Ⅰ) 直線MP的方程為

線段MP與曲線有異于M,P的公共點等價于上述方程在(-1,m)上有根,即函數(shù)

上有零點.

因為函數(shù)為三次函數(shù),所以至多有三個零點,兩個極值點.

.因此, 上有零點等價于內恰有一個極大值點和一個極小值點,即內有兩不相等的實數(shù)根.

等價于         即

又因為,所以m 的取值范圍為(2,3),從而滿足題設條件的r的最小值為2.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014屆吉林省高二下學期期中考試數(shù)學試卷(解析版) 題型:解答題

已知函數(shù),且

(1)求

(2)判斷的奇偶性;

(3)判斷上的單調性,并證明。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆山西曲沃中學高二下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù),且

(1)求的值

(2)判斷上的單調性,并利用定義給出證明

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江蘇省高一上學期第二次月考數(shù)學試卷 題型:解答題

(本小題滿分14分)已知函數(shù),且.

(1)判斷的奇偶性并說明理由;    

(2)判斷在區(qū)間上的單調性,并證明你的結論;

(3)若在區(qū)間上,不等式恒成立,試確定實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年浙江省高二下學期期中考試數(shù)學理卷 題型:解答題

已知函數(shù),且

(1)求函數(shù)的表達式;

(2)若數(shù)列的項滿足,試求;

(3)猜想數(shù)列的通項,并用數(shù)學歸納法證明.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù),且

(1)求

(2)判斷的奇偶性;

(3)判斷上的單調性,并證明。

查看答案和解析>>

同步練習冊答案