A. | π | B. | 2π | C. | 3π | D. | 4π |
分析 求出函數(shù)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,利用函數(shù)零點的判斷定理判斷函數(shù)的零點,利用函數(shù)的周期關(guān)系判斷,函數(shù)F(x)的零點,求出a,b的關(guān)系,即可得到結(jié)論.
解答 解:由函數(shù)$f(x)=1+x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+…-\frac{{{x^{2016}}}}{2016}$的導(dǎo)數(shù)為
f′(x)=1-x+x2-x3+…-x2015=$\frac{1-(-x)^{2016}}{1+x}$,
∵-1<x<1,∴1+x>0,0≤x2016<1,則1-x2016>0,
∴f′(x)=$\frac{1-(-x)^{2016}}{1+x}$=$\frac{1-{x}^{2016}}{1+x}$>0,可得f(x)在(-1,1)上遞增,
∵f(-1)=(1-1)+(-$\frac{1}{2}$-$\frac{1}{3}$-…-$\frac{1}{2015}$-$\frac{1}{2016}$<0,f(0)=1>0
∴函數(shù)f(x)在(-1,1)上有唯一零點x0∈(-1,0)
∵F(x)=f(x+4),得函數(shù)F(x)的零點是x0-4∈(-5,-4),
∵F(x)的零點均在區(qū)間(a,b)內(nèi),
∴a≤-5且b≥-4,得b-a的最小值為-4-(-5)=1
∵圓x2+y2=b-a的圓心為原點,半徑r=$\sqrt{b-a}$
∴圓x2+y2=b-a的面積的最小值是π.
故選:A
點評 本題主要考查函數(shù)零點的判斷和應(yīng)用,求出函數(shù)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,以及利用函數(shù)零點的性質(zhì)判斷函數(shù)的零點所在的區(qū)間是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4032π}$ | B. | $\frac{1}{2016π}$ | C. | $\frac{1}{4032}$ | D. | $\frac{1}{2016}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2+\frac{{\sqrt{3}}}{3}π$ | B. | $4+\sqrt{3}π$ | C. | $\frac{4}{3}+\frac{{\sqrt{3}}}{3}π$ | D. | $4+\frac{{\sqrt{3}}}{3}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽六安一中高一上國慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:選擇題
若函數(shù)的定義域是,則函數(shù)的定義域是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com