8.從一批羽毛球產(chǎn)品中任取一個,其質(zhì)量小于4.8g的概率為0.3,質(zhì)量小于4.85g的概率為0.32,那么質(zhì)量在[4.8,4.85)(g)范圍內(nèi)的概率是( 。
A.0.62B.0.68C.0.02D.0.38

分析 根據(jù)所給的,質(zhì)量小于4.8 g的概率是0.3,質(zhì)量小于4.85 g的概率是0.32,利用互斥事件的概率關(guān)系寫出質(zhì)量在[4.8,4.85)g范圍內(nèi)的概率.

解答 解:設(shè)一個羽毛球的質(zhì)量為ξg,則根據(jù)概率之和是1可以得到
P(ξ<4.8)=0.3,P(ξ<4.85)=0.32,
∴P(4.8≤ξ<4.85)=0.32-0.3=0.02.
故選C

點評 本題是一個頻率分布問題,主要明確兩個事件是互斥事件,利用互斥事件的概率關(guān)系得到所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知α是第二象限角,設(shè)點P(x,$\sqrt{5}$)是α終邊上一點,且cosα=$\frac{\sqrt{2}}{4}$x,則4cos(α+$\frac{π}{2}$)-3tan α=$\sqrt{15}$-$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)是偶函數(shù),它在(0,+∞)上是減函數(shù),若f(lgx)>f(1),則x的取值范圍是( 。
A.($\frac{1}{10}$,1)B.(0,$\frac{1}{10}$)∪(1,+∞)C.($\frac{1}{10}$,10)D.(0,1)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=$\sqrt{-{x}^{2}-5x+6}$的定義域是[-6,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},則m=( 。
A.3B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知全集U={1,2,3,4,5,6},A={1,3,5},B={2,3,4},則(∁UA)∩B=( 。
A.{2,4}B.{ 3 }C.{2,4,6}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在銳角△ABC中,若sinA=$\frac{3}{5}$,AB=5,AC=6,則BC=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{3}{5}t\\ y=-1+\frac{4}{5}t\end{array}$(t為參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=$\sqrt{2}sin(θ+\frac{π}{4})$.
(1)求曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于M,N兩點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=sin(ωx+φ)(其中ω>0且|φ|≤$\frac{π}{2}$)的圖象如圖所示,為了得到y(tǒng)=sinωx的圖象,只需把y=f(x)的圖象上所有點( 。
A.向右平移$\frac{π}{6}$個單位長度B.向右平移$\frac{π}{3}$個單位長度
C.向左平移$\frac{π}{6}$個單位長度D.向左平移$\frac{π}{3}$個單位長度

查看答案和解析>>

同步練習(xí)冊答案