(本題14分)(文) 如圖,在四棱臺ABCD—A1B1C1D1中,

下底ABCD是邊長為2的正方形,上底A1B1C1D1是邊長為1的正方形,

側棱DD1⊥平面ABCD,DD1=2.(1)求證:B1B//平面D1AC;

   (2)求證:平面D1AC⊥平面B1BDD1

  (1)略(2)略


解析:

(1)證明:設

   

 

    又因為

(2)證明:側棱DD1

  

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年浙江卷文)(本題14分)一個袋中裝有大小相同的黑球、白球和紅球。已知袋中共有10個球.從袋中任意摸出1個球,得到黑球的概率是;從袋中任意摸出2個球,至少得到1個白球的概率是.求:

    (Ⅰ)從中任意摸出2個球,得到的都是黑球的概率;

(Ⅱ)袋中白球的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年浙江卷文)(本題14分)已知數(shù)列的首項,通項,且成等差數(shù)列.求:

    (Ⅰ)的值;

(Ⅱ) 數(shù)列n項和的公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題14分)

如圖,四棱錐中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E為PD的中點

(1)求異面直線PA與CE所成角的大。

(2)(理)求二面角E-AC-D的大小。

    (文)求三棱錐A-CDE的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:2010屆上海市虹口區(qū)高三第二次模擬考試數(shù)學卷 題型:解答題

(本題14分)

如圖,四棱錐中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E為PD的中點

(1)求異面直線PA與CE所成角的大;

(2)(理)求二面角E-AC-D的大小。

    (文)求三棱錐A-CDE的體積。

 

查看答案和解析>>

同步練習冊答案