4.已知等差數(shù)列{an}中,a4=14,前10項(xiàng)和S10=185.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè){bn}是首項(xiàng)為1,公比為2的等比數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn

分析 (1)利用等差數(shù)列的通項(xiàng)公式與求和公式即可得出.
(2)利用等差數(shù)列與等比數(shù)列的求和公式即可得出.

解答 解:(1)由$\left\{\begin{array}{l}{a_4}=14\\{S_{10}}=185\end{array}\right.$,
∴$\left\{\begin{array}{l}{{a}_{1}+3d=14}\\{10{a}_{1}+\frac{10×9}{2}d=185}\end{array}\right.$,解得a1=5,d=3.
∴an=5+3(n-1)=3n+2.
(2)bn=2n-1
∴an+bn=(3n+2)+2n-1
數(shù)列{an+bn}的前n項(xiàng)和Sn=$\frac{n(5+3n+2)}{2}$+$\frac{{2}^{n}-1}{2-1}$=$\frac{3{n}^{2}+7n}{2}$+2n-1.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)n≥2時(shí),(an-Sn-12=SnSn-1,且a1=1,設(shè)bn=log2$\frac{{a}_{n+1}}{6}$,則bn等于(  )
A.2n-3B.2n-4C.n-3D.n-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如果$a+\frac{1}{a}=2$,那么${a^2}+\frac{1}{a^2}$的值是(  )
A.2B.4C.0D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知直線l過(guò)點(diǎn)(0,1),且傾斜角為$\frac{π}{6}$,當(dāng)此直線與拋物線x2=4y交于A,B時(shí),|AB|=( 。
A.$\frac{16}{3}$B.16C.8D.$\frac{{16\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知命題p:實(shí)數(shù)x滿足-2$≤1-\frac{x-1}{3}$≤2,命題q:實(shí)數(shù)x滿足[x-(1+m)][x-(1-m)]≤0(m>0),若¬p是¬q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,圓C1的極坐標(biāo)方程是ρ2+2ρcosθ=0,圓C2的參數(shù)方程是$\left\{\begin{array}{l}{x=cosα}\\{y=-1+sinα}\end{array}\right.$(α是參數(shù)).
(Ⅰ)求C1和C2的交點(diǎn)的極坐標(biāo);
(Ⅱ)直線l經(jīng)過(guò)C1和C2的交點(diǎn),且垂直于公共弦,求直線l的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.甲、乙兩名同學(xué)在五次考試中的數(shù)學(xué)成績(jī)統(tǒng)計(jì)用莖葉圖表示如圖所示,則甲、乙兩名同學(xué)成績(jī)穩(wěn)定的是乙.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若直線y=b與函數(shù)f(x)=$\frac{1}{3}$x3-4x+4的圖象有3個(gè)交點(diǎn),則b的取值范圍(-$\frac{4}{3}$,$\frac{28}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.拋物線x=4y2的焦點(diǎn)坐標(biāo)是  ( 。
A.($\frac{1}{16}$,0)B.(1,0)C.(0,$\frac{1}{16}$)D.(0,1 )

查看答案和解析>>

同步練習(xí)冊(cè)答案