2.不等式|x|<2x-1的解集為{x|x>1}.

分析 由題意,$\left\{\begin{array}{l}{x≥0}\\{x<2x-1}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{-x<2x-1}\end{array}\right.$,即可得出結(jié)論.

解答 解:由題意,$\left\{\begin{array}{l}{x≥0}\\{x<2x-1}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{-x<2x-1}\end{array}\right.$,
∴x>1.
故答案為{x|x>1}.

點評 本題考查絕對值不等式的解法,關(guān)鍵是去掉絕對值,化為與之等價的不等式來解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知A,B分別為橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右頂點,不同兩點P,Q在橢圓C上,且關(guān)于x軸對稱,設(shè)直線AP,BQ的斜率分別為m,n,則當(dāng)$\frac{a}-\frac{1}{3mn}$取最大值時,橢圓C的離心率為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=-x2+ax+b,且f(4)=-3.
(1)若函數(shù)f(x)在區(qū)間[2,+∞)上遞減,求實數(shù)b的取值范圍;
(2)若函數(shù)f(x)的圖象關(guān)于直線x=1對稱,且關(guān)于x的方程f(x)=log2m在區(qū)間[-3,3]上有解,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}的前n項和為Sn,且${S_n}=\frac{3}{2}{n^2}-\frac{1}{2}n({n∈{N^*}})$,數(shù)列{bn}滿足${a_n}=3{log_2}{b_n}-2({n∈{N^*}})$,則數(shù)列{an•bn}的前n項和Tn=10+(3n-5)2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在平面直角坐標(biāo)系中,若直線y=x與直線$\left\{\begin{array}{l}x=1+tcosθ\\ y=tsinθ\end{array}\right.,(t$是參數(shù),0≤θ<π)垂直,則θ=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.計算:
(1)${8^{\frac{1}{3}}}-{(6\frac{1}{4})^{\frac{1}{2}}}+{π^0}-{3^{-1}}$;
(2)$2{log_6}2+{log_6}9+\frac{3}{2}{log_3}\frac{1}{9}-{8^{\frac{2}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在($\frac{y}{\sqrt{x}}-\frac{x}{\sqrt{y}}$)16的二項展開式的17個項中,整式的個數(shù)是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.趙先生、錢先生、孫先生他們都知道桌子的抽屜里有16張撲克牌:紅桃A、Q、4黑桃J、8、4、2、7、3草花K,Q,5,4,6方塊A,5,李教授從這16張牌中挑出一張牌來,并把這張牌的點數(shù)告訴錢先生,把這張牌的花色告訴孫先生.這時,李教授問錢先生和孫先生:你們能從已知的點數(shù)或花色中推知這張牌是什么牌嗎?于是,趙先生聽到如下的對話:
錢先生:我不知道這張牌.
孫先生:我知道你不知道這張牌.錢先生:現(xiàn)在我知道這張牌了.
孫先生:我也知道了.
聽罷以上的對話,趙先生想了一想之后,就正確地推出這張牌是什么牌.
請問:這張牌是什么牌?方塊5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.曲線C:y2=12x,直線l:y=k(x-4),l與C交于兩點A(x1,y1),B(x2,y2).
(1)求x1x2
(2)若|AB|=4$\sqrt{42}$,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案