(本題滿分12分)在直角坐標(biāo)平面中,△的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,,平面內(nèi)兩點(diǎn)同時(shí)滿足下列條件:①=0;②;③(1)求△的頂點(diǎn)的軌跡方程;(2)過(guò)點(diǎn)直線與(1)中軌跡交于不同的兩點(diǎn),求△面積的最大值.
(Ⅰ)   (Ⅱ)   
(1)設(shè)
M點(diǎn)在線段AB的中垂線上.由已知A(-1,0),B(1,0),∴xM="0.    "
∴(-1-x0,-y0)+(1-x0,-y0)+(xx0,yy0)=(0,0),∴x0=,y0=,∴,∴
∴頂點(diǎn)C的軌跡方程為      (4分)
(2)設(shè)直線l方程為: ,E(x1,y1),F(xiàn)(x2,y2),
,消去y得:                 ①
                          (6分)
,

-----10分
設(shè),則單調(diào)遞減。
故當(dāng),即時(shí),----12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知實(shí)數(shù)滿足,求的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓,點(diǎn)為坐標(biāo)原點(diǎn).
(1)若圓與直線相切時(shí),求中點(diǎn)的軌跡方程;
(2)若圓與相切時(shí),且面積最小,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

內(nèi)有1點(diǎn),過(guò)作直角交圓于,求動(dòng)弦中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)圓O1和圓O2是兩個(gè)定圓,動(dòng)圓P與這兩個(gè)定圓都相切,則圓P的圓心軌跡不可能是(    )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

條件:(1)截軸弦長(zhǎng)為2.(2)被軸分成兩段圓弧,其弧長(zhǎng)之比為3:1在滿足(1)(2)的所有圓中,求圓心到直線距離最小時(shí)圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)直角梯形ABCD中, ∠DAB=90°,AD//BC,
AB="2," AD=, BC=,橢圓E以A,B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)D.  (1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓E的方程;  (2)若點(diǎn)Q滿足:,問(wèn)是否存在不平行AB,的直線與橢圓E交于M、N兩點(diǎn).且|MQ|=|NQ|.若存在,求直線的斜率的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線的方程為,

過(guò)點(diǎn)M(0,m)且傾斜角為的直線交拋物線于
Ax1,y1),Bx2,y2)兩點(diǎn),且
(1)求m的值
(2)(文)若點(diǎn)M所成的比為,求直線AB的方程
(理)若點(diǎn)M所成的比為,求關(guān)于的函數(shù)關(guān)系式。                           

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(原創(chuàng)題)
已知是曲線上一點(diǎn),是該曲線的兩個(gè)焦點(diǎn),若內(nèi)角平分線的交點(diǎn)到三邊上的距離為1,,則的值為   
A.B.C.-D.

查看答案和解析>>

同步練習(xí)冊(cè)答案