已知A(1,1)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點,F(xiàn)1、F2是橢圓的兩焦點,且滿足|AF1|+|AF2|=4.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點C、D是橢圓上兩點,直線AC、AD的傾斜角互補,求直線CD的斜率.
(1)由橢圓定義知2a=4,所以a=2,
即橢圓方程為
x2
4
+
y2
b2
=1
把(1,1)代入得
1
4
+
1
b2
=1所以b2=
4
3
,橢圓方程為:
x2
4
+
3y2
4
=1
(2)由題意知,AC的傾斜角不為900,故設(shè)AC方程為y=k(x-1)十1,
聯(lián)立
y=k(x-1)+1
x2
4
+
3
4
y2=1
消去y,得(1+3k2)x2-6k(k-1)x+3k2-6k-1=0.
∵點A(1,1)、C在橢圓上,∴xC=
3k2-6k-1
3k2+1

∵AC、AD直線傾斜角互補,∴AD的方程為y=-k(x-l)+1,
同理xD=
3k2+6k-1
3k2+1

又yC=k(xC-1)+1,yD=-k(xD-1)+1,
∴yC-yD=k(xC+xD)-2k.
yc-yd
xc-xd
=
1
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浦東新區(qū)三模)已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當(dāng)m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx(0≤x≤
2m
3
)
和橢圓弧
x2
4m2
+
y2
3m2
=1
(
2m
3
≤x≤2m)

(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省懷化市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

下圖展示了一個由區(qū)間(其中為一正實數(shù))到實數(shù)集R上的映射過程:區(qū)間中的實數(shù)對應(yīng)線段上的點,如圖1;將線段圍成一個離心率為的橢圓,使兩端點、恰好重合于橢圓的一個短軸端點,如圖2 ;再將這個橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點,長軸在軸上,已知此時點的坐標(biāo)為,如圖3,在圖形變化過程中,圖1中線段的長度對應(yīng)于圖3中的橢圓弧ADM的長度.圖3中直線與直線交于點,則與實數(shù)對應(yīng)的實數(shù)就是,記作,

現(xiàn)給出下列5個命題

;   ②函數(shù)是奇函數(shù);③函數(shù)上單調(diào)遞增;   ④.函數(shù)的圖象關(guān)于點對稱;⑤函數(shù)時AM過橢圓的右焦點.其中所有的真命題是:    (   )

A.①③⑤          B.②③④                       C.②③⑤             D.③④⑤

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆海南省高二上學(xué)期期末文科數(shù)學(xué)試題(解析版) 題型:解答題

(本小題滿分12分)已知A,B兩點是橢圓 與坐標(biāo)軸正半軸的兩個交點.

(1)設(shè)為參數(shù),求橢圓的參數(shù)方程;

(2)在第一象限的橢圓弧上求一點P,使四邊形OAPB的面積最大,并求此最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省樂山市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:選擇題

已知P是橢畫+=1左準(zhǔn)線上一點,F(xiàn)1、F2分別是其左、右焦點,PF2與橢圓交于點Q,且=2,則||的值為( )
A.
B.4
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省樂山市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

已知P是橢畫+=1左準(zhǔn)線上一點,F(xiàn)1、F2分別是其左、右焦點,PF2與橢圓交于點Q,且=2,則||的值為( )
A.
B.4
C.
D.

查看答案和解析>>

同步練習(xí)冊答案