實(shí)數(shù)x、y滿足=1,試求x-y的最大值與最小值,并指出何時(shí)取得最大值與最小值.

解:由已知可設(shè)

則x-y=(4cosθ+1)-(3sinθ-2)=(4cosθ-3sinθ)+3=5cos(θ+α)+3,其中tanα=,

當(dāng)cos(θ+α)=1,即θ+α=2kπ,k∈Z時(shí),cosθ=cos(2kπ-α)=cosα=,

sinθ=sin(2kπ-α)=-sinα=-,

此時(shí)x=4×+1=,y=3×(-)-2=-,x-y的最大值為8,

同理,當(dāng)x=-,y=-時(shí),x-y的最小值為-2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
1≤x+y≤3
-1≤x-y≤1
,則4x+2y的取值范圍是
[2,10]
[2,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•宿州一模)已知實(shí)數(shù)x,y滿足-1<x+y<4且2<x-y<3,則z=2x-3y可能取到的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足1≤xy2≤2,4≤
x2
y
≤9,則
x2
y6
的范圍為
[4,81]
[4,81]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實(shí)數(shù)x,y滿足1+cos2(2x+3y-1)=
x2+y2+2(x+1)(1-y)
x-y+1
,則xy的最小值是
1
25
1
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•渭南二模)設(shè)實(shí)數(shù)x,y滿足
-1≤x+y≤1
-1≤x-y≤1
,則點(diǎn)(x,y)在圓面x2+y2
1
2
內(nèi)部的概率( 。

查看答案和解析>>

同步練習(xí)冊答案