(選做題)
直角坐標(biāo)系xOy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的方程為ρ=4cosθ,直線l的方程為(t為參數(shù)),直線l與曲線C的公共點(diǎn)為T,
(Ⅰ)求點(diǎn)T的極坐標(biāo);
(Ⅱ)過(guò)點(diǎn)T作直線l′,l′被曲線C截得的線段長(zhǎng)為2,求直線l′的極坐標(biāo)方程。
解:(Ⅰ)曲線C的直角坐標(biāo)方程為,
代入上式并整理得,
解得
∴點(diǎn)的坐標(biāo)為,其極坐標(biāo)為。
(Ⅱ)設(shè)直線l′的方程為
由(Ⅰ)得曲線C是以為圓心的圓,且圓心到直線的距離為
,解得,或,
直線的方程為,或, 
其極坐標(biāo)方程為。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.(不等式選做題)若不等式a≥|x+1|+|x-2|存在實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是
 

B.(幾何證明選做題)如圖,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,則AE=
 

精英家教網(wǎng)

C.(坐標(biāo)系與參數(shù)方程選做題)直角坐標(biāo)系xoy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建極坐標(biāo)系,設(shè)點(diǎn)A,B分別在曲線C1
x=3+cos θ
y=4+sin θ
 (θ為參數(shù))和曲線C2:p=1上,則|AB|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.(不等式選做題)若不等式|x+1|+|x-2|≥a對(duì)任意x∈R恒成立,則a的取值范圍是
 

B.(幾何證明選做題)如圖,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,則AE=
 

精英家教網(wǎng)
C.(坐標(biāo)系與參數(shù)方程選做題)直角坐標(biāo)系xoy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建極坐標(biāo)系,設(shè)點(diǎn)A,B分別在曲線C1
x=3+cosθ
y=sinθ
 (θ為參數(shù))和曲線C2:p=1上,則|AB|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選做題)直角坐標(biāo)系xOy和極坐標(biāo)系Ox的原點(diǎn)與極點(diǎn)重合,x軸正半軸與極軸重合,單位長(zhǎng)度相同,在直角坐標(biāo)系下,曲線C的參數(shù)方程為
x=4cosφ
y=2sinφ
,(φ
為參數(shù)).
(1)在極坐標(biāo)系下,曲線C與射線θ=
π
4
和射線θ=-
π
4
分別交于A,B兩點(diǎn),求△AOB的面積;
(2)在直角坐標(biāo)系下,直線l的參數(shù)方程為
x=6
2
-2t
y=t-
2
(t為參數(shù)),求曲線C與直線l的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•吉安二模)(1)(坐標(biāo)系與參數(shù)方程選做題)直角坐標(biāo)系x0y中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建極坐標(biāo)系,設(shè)點(diǎn)A,B分別在曲線C1
x=3+cosθ
y=sinθ
(θ為參數(shù))和曲線C2:ρ=2sinθ上,則|AB|的最小值為
10
-2
10
-2

(2)(不等式選講選做題)若關(guān)于x的不等式|x+l|+|x-m|>4的解集為R,則實(shí)數(shù)m的取值范圍是
(-∞,-5)∪(3,+∞)
(-∞,-5)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選做題)直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=4t+2
y=3-3t
,(t是參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=2cosθ.
(Ⅰ)求直線l的普通方程及曲線C的直角坐標(biāo)方程;
(Ⅱ)若P與Q分別是直線l與曲線C上的動(dòng)點(diǎn),求|PQ|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案