如圖,在四棱錐中,底面是正方形,側(cè)棱⊥底面,,是的中點(diǎn),作交于點(diǎn).
(1)證明平面;
(2)證明平面.
(1)見解析(2)見解析
解析試題分析:(1)連接AC,AC交BD于O.連接EO.根據(jù)正方形的性質(zhì),得EO是△PAC的中位線,得PA∥EO,從而得到PA∥平面EDB;
(2)過F點(diǎn)作FG⊥PC于G,可得FG⊥平面PDE,F(xiàn)G是點(diǎn)F到平面PDE的距離.等腰Rt△PDC中,算出PE長和△PED的面積,再利用三角形相似算出PF和FG的長,最后用錐體體積公式,可算出三棱錐P-DEF的體積.
試題解析:方法一:
(1)證明:連結(jié)AC,AC交BD于O,連結(jié)EO。
∵底面ABCD是正方形,∴點(diǎn)O是AC的中點(diǎn)
在中,EO是中位線,∴PA//EO
而平面EDB且平面EDB,
所以,PA//平面EDB
(2)證明:
∵PD⊥底面ABCD且底面ABCD,∴
∵PD=DC,可知是等腰直角三角形,而DE是斜邊PC的中線,
∴。 ①
同樣由PD⊥底面ABCD,得PD⊥BC。
∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC。
而平面PDC,∴。 ②
由①和②推得平面PBC。
而平面PBC,∴
又且,所以PB⊥平面EFD。
方法二:如圖所示建立空間直角坐標(biāo)系,D為坐標(biāo)原點(diǎn),設(shè)。
(1)證明:連結(jié)AC,AC交BD于G,連結(jié)EG。
依題意得。
∵底面ABCD是正方形,∴G是此正方形的中心,故點(diǎn)G的坐標(biāo)為且
。
∴,這表明PA//EG。
而平面EDB且平面EDB,∴PA//平面EDB。
(2)證明;依題意得,。又,故。
∴.
由已知,且,所以平面EFD.
考點(diǎn):直線與平面平行的判定與性質(zhì),二面角,直線與平面垂直的判定與性質(zhì)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱的底面是等腰直角三角形,,側(cè)棱底面,且,是的中點(diǎn),是上的點(diǎn).
(1)求異面直線與所成角的大小(結(jié)果用反三角函數(shù)表示);
(2)若,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且底面ABCD,,E是PA的中點(diǎn).
(1)求證:平面平面EBD;
(2)若PA=AB=2,直線PB與平面EBD所成角的正弦值為,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在如圖所示的幾何體中,四邊形為平行四邊形,,平面,,,,.
(1)若是線段的中點(diǎn),求證:平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱中,側(cè)棱平面,為等腰直角三角形,,且分別是的中點(diǎn).
(1)求證:平面;
(2)求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐中,//,,,平面,.
(1)求證:平面;
(2)求異面直線與所成角的余弦值;
(3)設(shè)點(diǎn)為線段上一點(diǎn),且直線與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐的底面為直角梯形,,,底面,且,是的中點(diǎn).
⑴求證:直線平面;
⑵⑵若直線與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,四棱錐P—ABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M為PC的中點(diǎn)。
(1)求證:BM∥平面PAD;
(2)在側(cè)面PAD內(nèi)找一點(diǎn)N,使MN平面PBD;
(3)求直線PC與平面PBD所成角的正弦。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com