(2012•株洲模擬)已知直三棱柱ABC-A1B1C1,AB=AC,F(xiàn)為BB1上一點(diǎn),
BFFB1
=2
,BF=BC=2a,若D為BC的中點(diǎn),E為線段AD上不同于A,D任意一點(diǎn).
(1)證明:EF⊥FC1;
(2)試問:若AB=2a,在線段AD上的E點(diǎn)能否使EF與平面BB1C1C成60°角,為什么?證明你的結(jié)論.
分析:(1)先證明△FB1C1≌△DBF,從而可得C1F⊥FD,又FD是EF在平面C1B1CB的射影,可證C1F⊥FE;
(2)先證明AD⊥平面C1B1CB,可得∠EFD是EF與平面C1B1CB所成的角,由FD=
5
a
,所以tan60°=
ED
5
a
求出ED長,即可得到結(jié)論.
解答:(1)證明:連接FD,F(xiàn)C1

BF
FB1
=2
,BF=BC=2a,D為BC的中點(diǎn),可得BF=B1C1,BD=B1F,
∵∠C1B1F=∠FBD,∴△FB1C1≌△DBF,則∠C1FB1=∠FDB
又∠DFB+∠FDB=90°,所以C1F⊥FD
又FD是EF在平面C1B1CB的射影,則C1F⊥FE
(2)解:在線段AD上的不存在E點(diǎn)使EF與平面BB1C1C成60°角,理由如下:
∵AB=AC,D為BC的中點(diǎn),
∴AD⊥BC
∵平面ABC⊥平面C1B1CB,平面ABC∩平面C1B1CB=CB
∴AD⊥平面C1B1CB
∴∠EFD是EF與平面C1B1CB所成的角
由題意知FD=
5
a
,所以tan60°=
ED
5
a

于是ED=
15
a>
3
a

故不存在.
點(diǎn)評:本題考查線線垂直,考查線面角,考查學(xué)生分析解決問題的能力,確定線面角是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•株洲模擬)在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為圓心的圓與直線:x-
3
y=4
相切.
(1)求圓O的方程;
(2)若圓O上有兩點(diǎn)M、N關(guān)于直線x+2y=0對稱,且|MN|=2
3
,求直線MN的方程;
(3)圓O與x軸相交于A、B兩點(diǎn),圓內(nèi)的動(dòng)點(diǎn)P使|PA|、|PO|、|PB|成等比數(shù)列,求
PA
PB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•株洲模擬)函數(shù)y=loga(x+2)-1(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny+1=0上,其中mn>0,則
1
m
+
2
n
的最小值為
3+2
2
3+2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•株洲模擬)設(shè)x0是函數(shù)f(x)=(
1
3
)x-log2x
的零點(diǎn).若0<a<x0,則f(a)的值滿足(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•株洲模擬)已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的圖象如圖所示,則?等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•株洲模擬)已知ABCD-A1B1C1D1為單位正方體,黑白兩只螞蟻從點(diǎn)A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”,白螞蟻爬行的路線是AA1→A1D1→…,黑螞蟻爬行的路線是AB→BB1→…,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(其中i是自然數(shù)),設(shè)黑、白螞蟻都走完2012段后各停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑、白兩只螞蟻的距離是
2
2

查看答案和解析>>

同步練習(xí)冊答案