精英家教網 > 高中數學 > 題目詳情
設定義在R上的函數f(x)滿足f(x+2)•f(x)=7,若f(1)=2,則f(107)=
7
2
7
2
分析:由f(x+2)•f(x)=7得f(x+2)•f(x)=f(x+2)•f(x+4),得f(x+4)=f(x),可得函數的周期為4,然后利用函數的周期性求f(107)即可.
解答:解:由f(x+2)•f(x)=7,得f(x+2)•f(x)=f(x+2)•f(x+4),
所以f(x+4)=f(x),即函數的周期為4.
所以f(107)=f(26×4+3)=f(3),
因為f(1)=2,所以f(3)f(1)=7,解得f(3)=
7
2

所以f(107)=
7
2

故答案為:
點評:本題主要考查函數周期性的判斷和應用,要求熟練掌握函數周期的定義和求法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設定義在R上的函數f(x)=
1
x-2
(x>2)
1
2-x
(x<2)
1(x=2)
,若關于x的方程f2(x)+af(x)+b=3有且只有3個不同實數解x1、x2、x3,且x1<x2<x3,則x12+x22+x32=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義在R上的函數f(x)滿足f(x)•f(x+2)=3,若f(1)=2,則f(5)=
2
2
;f(2011)=
3
2
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•順義區(qū)二模)設定義在R上的函數f(x)是最小正周期為2π的偶函數,f′(x)是f(x)的導函數.當x∈[0,π]時,0<f(x)<1;當x∈(0,π)且x≠
π
2
時,(x-
π
2
)f′(x)<0
.則函數y=f(x)-cosx在[-3π,3π]上的零點個數為
6
6

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義在R上的函數f(x)滿足f(x+π)=f(x-π),f(
π
2
-x
)=f(
π
2
+x
),當x∈[-
π
2
,
π
2
]
時,0<f(x)<1;當x∈(-
π
2
π
2
)
且x≠0時,x•f′(x)<0,則y=f(x)與y=cosx的圖象在[-2π,2π]上的交點個數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義在R上的函數f(x)同時滿足以下條件:①f(x+1)=-f(x)對任意的x都成立;②當x∈[0,1]時,f(x)=ex-e•cos
πx
2
+m(其中e=2.71828…是自然對數的底數,m是常數).記f(x)在區(qū)間[2013,2016]上的零點個數為n,則( 。
A、m=-
1
2
,n=6
B、m=1-e,n=5
C、m=-
1
2
,n=3
D、m=e-1,n=4

查看答案和解析>>

同步練習冊答案