14.“k=1”是“直線l1:kx+y+2=0與直線l2:x+ky-k=0平行”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要

分析 求出直線平行的充要條件,結(jié)合集合的包含關(guān)系,判斷即可.

解答 解:∵“直線l1:kx+y+2=0與直線l2:x+ky-k=0平行”,
∴-k=-$\frac{1}{k}$,解得:k=±1,
故k=1是k=±1的充分不必要條件,
故選:A.

點(diǎn)評 本題考查了充分必要條件,考查直線的平行,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若tanα=$\frac{1}{2}$,則$\frac{sinα-3cosα}{sina+cosα}$=( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{5}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列命題正確的是( 。
A.已知實(shí)數(shù)a,b,則“a>b”是“a2>b2”的必要不充分條件
B.“存在x0∈R,使得$x_0^2-1<0$”的否定是“對任意x∈R,均有x2-1>0”
C.函數(shù)$f(x)={x^{\frac{1}{3}}}-{(\frac{1}{2})^x}$的零點(diǎn)在區(qū)間$(\frac{1}{3},\frac{1}{2})$內(nèi)
D.設(shè)m,n是兩條直線,α,β是空間中兩個平面,若m?α,n?β,m⊥n,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在區(qū)間[0,2]上分別任取兩個數(shù)m,n,若向量$\overrightarrow{a}$=(m,n),則|$\overrightarrow{a}$|≤2的概率是( 。
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(1-$\frac{1}{x}$)的定義域?yàn)閇1,+∞),則函數(shù)y=$\frac{f(x)}{\sqrt{[lo{g}_{2}(1-x)]^{2}-1}}$的定義域?yàn)?#8709;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知sinα=2cosα,則tan2α=-$\frac{4}{3}$,cos2α=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,過頂點(diǎn)在原點(diǎn)O,對稱軸為y軸的拋物線E上的定點(diǎn)A(2,1)作斜率分別為k1,k2的直線,分別交拋物線E于B,C兩點(diǎn).
(1)求拋物線E的標(biāo)準(zhǔn)方程和準(zhǔn)線方程;
(2)若k1+k2=k1k2,且△ABC的面積為8$\sqrt{5}$,求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在等差數(shù)列{an}中,a1=-2016,其前n項(xiàng)的和為Sn,若$\frac{{{S_{2015}}}}{2015}-\frac{{{S_{2012}}}}{2012}=3$,則S2016的值等于( 。
A.2014B.2015C.-2015D.-2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在三棱柱ABC-A1B1C1中,△ABC是等邊三角形,BC=CC1=4,D是A1C1中點(diǎn).
(Ⅰ)求證:A1B∥平面B1CD;
(Ⅱ)當(dāng)三棱錐C-B1C1D體積最大時,求點(diǎn)B到平面B1CD的距離.

查看答案和解析>>

同步練習(xí)冊答案