將邊長為1的正方形ABCD沿對角線AC折起,使平面ACD⊥平面ABC,則折起后B,D兩點的距離為
 
;三棱錐D-ABC的體積是
 
分析:將邊長為1的正方形ABCD沿對角線AC折起,使平面ACD⊥平面ABC,通過解三角形求出折起后B,D兩點的距離;直接求出三棱錐D-ABC的體積.
解答:解:將邊長為1的正方形ABCD沿對角線AC折起,使平面ACD⊥平面ABC,
則折起后B,D兩點的距離為:
(
2
2
)
2
+(
2
2
)
2
=1
;
三棱錐D-ABC的體積是:
1
3
×
1
2
× 1×1×
2
2
=
2
12

故答案為1;
2
12
點評:本題是基礎(chǔ)題,考查平面圖形的折疊與展開,求出棱錐的體積,兩點之間的距離,正確處理折疊前后的關(guān)系是解好這類問題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

將邊長為1的正方形ABCD沿對角線BD折起,使得點A到點A′的位置,且A′C=1,則折起后二面角A′-DC-B的大小( 。
A、arctan
2
2
B、
π
4
C、arctan
2
D、
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)將邊長為1的正方形ABCD沿對角線BD折成直二面角,若點P滿足
BP
=
1
2
BA
-
1
2
BC
+
BD
,則|
BP
|2的值為( 。
A、
3
2
B、2
C、
10-
2
4
D、
9
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將邊長為1的正方形ABCD沿對角線AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱錐D-ABC中,給出下列三個命題:
①面DBC是等邊三角形;  ②AC⊥BD;  ③三棱錐D-ABC的體積是
2
6

其中正確命題的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將邊長為1的正方形ABCD沿對角線BD折起成直二面角A-BD-C,則在這個直二面角A-BD-C中點A到直線BC的距離是
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將邊長為1的正方形ABCD沿對角線AC對折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為
2
π
3
2
π
3

查看答案和解析>>

同步練習冊答案